Principles and applications of high-speed single-pixelimaging technology
Qiang GUO , Yu-xi WANG , Hong-wei CHEN , Ming-hua CHEN , Si-gang YANG , Shi-zhong XIE
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1261 -1267.
Principles and applications of high-speed single-pixelimaging technology
Single-pixel imaging (SPI) technology has garnered great interestwithin the last decade because of its ability to record high-resolutionimages using a single-pixel detector. It has been applied to diversefields, such as magnetic resonance imaging (MRI), aerospace remotesensing, terahertz photography, and hyperspectral imaging. Comparedwith conventional silicon-based cameras, single-pixel cameras (SPCs)can achieve image compression and operate over a much broader spectralrange. However, the imaging speed of SPCs is governed by the responsetime of digital micromirror devices (DMDs) and the amount of compressionof acquired images, leading to low (ms-level) temporal resolution.Consequently, it is particularly challenging for SPCs to investigatefast dynamic phenomena, which is required commonly in microscopy.Recently, a unique approach based on photonic time stretch (PTS) toachieve high-speed SPI has been reported. It achieves a frame ratefar beyond that can be reached with conventional SPCs. In this paper,we first introduce the principles and applications of the PTS technique.Then the basic architecture of the high-speed SPI system is presented,and an imaging flow cytometer with high speed and high throughputis demonstrated experimentally. Finally, the limitations and potentialapplications of high-speed SPI are discussed.
Compressive sampling / Single-pixelimaging / Photonic time stretch / Imaging flow cytometry
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
Zhejiang University and Springer-Verlag GmbHGermany
/
| 〈 |
|
〉 |