Computational methods in super-resolution microscopy

Zhi-ping ZENG , Hao XIE , Long CHEN , Karl ZHANGHAO , Kun ZHAO , Xu-san YANG , Peng XI

Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1222 -1235.

PDF (1829KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1222 -1235. DOI: 10.1631/FITEE.1601628
Review
Review

Computational methods in super-resolution microscopy

Author information +
History +
PDF (1829KB)

Abstract

The broad applicability of super-resolution microscopy has beenwidely demonstrated in various areas and disciplines. The optimizationand improvement of algorithms used in super-resolution microscopyare of great importance for achieving optimal quality of super-resolutionimaging. In this review, we comprehensively discuss the computationalmethods in different types of super-resolution microscopy, includingdeconvolution microscopy, polarization-based super-resolution microscopy,structured illumination microscopy, image scanning microscopy, super-resolutionoptical fluctuation imaging microscopy, single-molecule localizationmicroscopy, Bayesian super-resolution microscopy, stimulated emissiondepletion microscopy, and translation microscopy. The developmentof novel computational methods would greatly benefit super-resolutionmicroscopy and lead to better resolution, improved accuracy, and fasterimage processing.

Keywords

Super-resolution microscopy / Deconvolution / Computational methods

Cite this article

Download citation ▾
Zhi-ping ZENG, Hao XIE, Long CHEN, Karl ZHANGHAO, Kun ZHAO, Xu-san YANG, Peng XI. Computational methods in super-resolution microscopy. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1222-1235 DOI:10.1631/FITEE.1601628

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agard, D.A., Hiraoka, Y., Sedat, J.W., 1989. Threedimensionalmicroscopy: image processing for high resolution subcellular imaging. 33rd Annual Technical Symp., p.24–30.

[2]

Axelrod, D., 1989. Fluorescence polarization microscopy. Methods Cell Biol., 30:333–352.

[3]

Beck, A., Teboulle, M., 2009. A fast iterative shrinkagethresholding algorithm forlinear inverse problems. SIAM J. Imag. Sci., 2(1):183–202.

[4]

Betzig, E., Patterson, G.H., Sougrat, R., , 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642–1645.

[5]

Biggs, D.S., 2010. 3D deconvolution microscopy. Curr. Protoc. Cytom., 52:12.19.1–12.19.20.

[6]

Broxton, M., Grosenick, L., Yang, S., , 2013. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Expr., 21(21):25418–25439.

[7]

Chen, X., Wei, M., Zheng, M.M., , 2016. Study ofRNA polymerase II clustering inside live-cell nuclei using Bayesiannanoscopy. ACSNano, 10(2):2447–2454.

[8]

Cox, S., Rosten, E., Monypenny, J., , 2012. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods, 9(2):195–200.

[9]

DeMay, B.S., Noda, N., Gladfelter, A.S., , 2011. Rapid and quantitative imaging of excitation polarized gluorescencereveals ordered septin dynamics in live yeast. Biophys. J., 101(4):985–994.

[10]

Dertinger, T., Colyer, R., Iyer, G., , 2009. Fast, background-free, 3D super-resolution optical fluctuation imaging(SOFI). PNAS, 106(52):22287–22292.

[11]

Dertinger, T., Pallaoro, A., Braun, G., , 2013. Advances in superresolution optical fluctuation imaging (SOFI). Q. Rev. Biophys., 46(2):210–221.

[12]

Ding, Y., Xi, P., Ren, Q., 2011. Hacking the opticaldiffraction limit: review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull., 56(18):1857–1876.

[13]

Dong, S., Liao, J., Guo, K., , 2015. Resolutiondoubling with a reduced number of image acquisitions. Biomed. Opt. Expr., 6(8):2946–2952.

[14]

Falk, M.M., Lauf, U., 2001. High resolution, fluorescence deconvolution microscopy and taggingwith the autofluorescent tracers CFP, GFP, and YFP to study the structuralcomposition of gap junctions in living cells. Microsc. Res. Techn., 52(3):251–262.

[15]

Gao, J., Yang, X., Djekidel, M.N., , 2016. Developing bioimaging and quantitative methods to study 3D genome. Quant. Biol., 4(2):129–147.

[16]

Geissbuehler, S., Bocchio, N.L., Dellagiacoma, C., , 2012. Mapping molecular statistics with balanced superresolution opticalfluctuation imaging (bSOFI). Opt. Nanosc., 1(1):1–7.

[17]

Gold, R., 1964. An Iterative Unfolding Method forResponse Matrices. Argonne National Lab,Lemont, USA.

[18]

Gonzalez, R.C., Woods, R.E., 2008. Digital Image Processing. Pearson Education, New York, USA.

[19]

Gu, M., Li, X., Cao, Y., 2014. Optical storage arrays:a perspective for future big data storage. Light Sci. Appl., 3(5):e177.

[20]

Gustafsson, M.G., 2000. Surpassing the lateralresolution limit by a factor of two using structured illuminationmicroscopy. J. Microsc., 198(2):82–87.

[21]

Gustafsson, M.G., Shao, L., Carlton, P.M., , 2008. Three-dimensional resolution doubling in wide-field fluorescencemicroscopy by structured illumination. Biophys. J., 94(12):4957–4970.

[22]

Hafi, N., Grunwald, M., van den Heuvel, L.S., , 2014. Fluorescence nanoscopy by polarization modulation and polarizationangle narrowing. Nat. Methods, 11(5):579–584.

[23]

Hao, X., Kuang, C., Gu, Z., , 2013. From microscopyto nanoscopy via visible light. Light Sci. Appl., 2:e108.

[24]

Hell, S.W., Wichmann, J., 1994. Breaking the diffraction resolution limit by stimulatedemission: stimulatedemission-depletion fluorescence microscopy. Opt. Lett., 19(11):780–782.

[25]

Hess, S.T., Girirajan, T.P., Mason, M.D., 2006. Ultra-highresolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91(11):4258–4272.

[26]

Hu, Y.S., Nan, X., Sengupta, P., , 2013a. Accelerating 3B single-molecule super-resolution microscopy withcloud computing. Nat. Methods, 10(2):96–97.

[27]

Hu, Y.S., Zhu, Q., Elkins, K., , 2013b. Light-sheetBayesian microscopy enables deep-cell super-resolution imaging ofheterochromatin in live human embryonic stem cells. Opt. Nanosc., 2(1):7.

[28]

Huang, B., Babcock, H., Zhuang, X., 2010. Breakingthe diffraction barrier: super-resolution imaging of cells. Cell, 143(7):1047–1058.

[29]

Ingaramo, M., York, A.G., Wawrzusin, P., , 2014. Twophoton excitation improves multifocal structured illuminationmicroscopy in thick scattering tissue. PNAS, 111(14):5254–5259.

[30]

Jansson, P.A., 2014. Deconvolution of Images and Spectra. Courier Corporation, North Chelmsford, USA.

[31]

Klar, T.A., Jakobs, S., Dyba, M., , 2000. Fluorescence microscopy with diffraction resolution barrier brokenby stimulated emission. PNAS, 97(15):8206.

[32]

Lal, A., Shan, C., Xi, P., 2016. Structured illuminationmicroscopy image reconstruction algorithm. IEEE J. Sel. Topics Quant. Electron., 22(4):1–14.

[33]

Lazar, J., Bondar, A., Timr, S., , 2011. Two-photon polarization microscopy reveals protein structure andfunction. Nat.Methods, 8(8):684–690.

[34]

Li, D., Shao, L., Chen, B.C., , 2015. Extended-resolutionstructured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349(6251):aab3500.

[35]

Liu, Y., Ding, Y., Alonas, E., , 2012. Achievingλ/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator. PLOS ONE, 7(6):e40003.

[36]

McNally, J.G., Karpova, T., Cooper, J., , 1999. Three dimensional imaging by deconvolution microscopy. Methods, 19(3):373–385.

[37]

Mertz, J., 2011. Optical sectioning microscopy withplanar or structured illumination. Nat. Methods, 8(10):811–819.

[38]

Müller, C.B., Enderlein, J., 2010. Image scanning microscopy. Phys. Rev. Lett., 104(19):198101.

[39]

Orieux, F., Sepulveda, E., Loriette, V., , 2012. Bayesian estimation for optimized structured illumination microscopy. IEEE Trans. Image Process., 21(2):601–614.

[40]

Pawley, J.B., 2010. Handbook of Biological Confocal Microscopy. Springer, New York.

[41]

Qiu, Z., Wilson, R.S., Liu, Y., , 2016. Translation microscopy (TRAM) for super-resolution imaging. Sci. Rep., 6:19993.

[42]

Rizzo, M.A., Piston, D.W., 2005. High-contrast imaging of fluorescent protein FRET byfluorescence polarization microscopy. Biophys. J., 88(2):L14–L16.

[43]

Rust, M.J., Bates, M., Zhuang, X., 2006. Sub-diffraction-limitimaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3(10):793–796.

[44]

Schoonderwoert, V., Dijkstra, R., Luckinavicius, G., , 2013. Huygens STED deconvolution increases signal-tonoise and image resolutiontowards 22 nm. Microsc. Today, 21(6):38–44.

[45]

Schulz, O., Pieper, C., Clever, M., , 2013. Resolution doubling in fluorescence microscopy with confocal spinning-diskimage scanning microscopy. PNAS, 110(52): 21000–21005.

[46]

Sheppard, C.J., Mehta, S.B., Heintzmann, R., 2013. Superresolutionby image scanning microscopy using pixel reassignment. Opt. Lett., 38(15):2889–2892.

[47]

Sibarita, J.B., 2005. Deconvolution microscopy. In: Microscopy Techniques. Springer-Verlag, Berlin.

[48]

Vrabioiu, A.M., Mitchison, T.J., 2006. Structural insights into yeast septin organization frompolarized fluorescence microscopy. Nature, 443(7110):466-469.

[49]

Yang, Q., Cao, L., Zhang, H., , 2015. Method oflateral image reconstruction in structured illumination microscopywith super resolution. J. Innov. Opt. Health Sci., 9(3):1630002.

[50]

Yang, X., Xie, H., Alonas, E., , 2016a. Mirror-enhancedsuper-resolution microscopy. Light Sci. Appl., 5(6): e16134.

[51]

Yang, X., Zhanghao, K., Wang, H., , 2016b. Versatile application of fluorescent quantum dot labels in superresolutionfluorescence microscopy. ACS Photon., 3(9): 1611–1618.

[52]

Yassif, J., 2012. Quantitative Imaging in Cell Biology. Academic Press, Cambridge, USA.

[53]

Yu, W., Ji, Z., Dong, D., , 2016. Super-resolutiondeep imaging with hollow Bessel beam STED microscopy. Laser Photon. Rev., 10(1):147–152.

[54]

Zeng, Z., Chen, X., Wang, H., , 2015. Fast superresolutionimaging with ultra-high labeling density achieved by joint taggingsuper-resolution optical fluctuation imaging. Sci. Rep., 5:8359.

[55]

Zhang, X., Chen, X., Zeng, Z., , 2015. Developmentof a reversibly switchable fluorescent protein for superresolutionoptical fluctuation imaging (SOFI). ACS Nano, 9(3):2659–2667.

[56]

Zhanghao, K., Chen, L., Wang, M.Y., , 2016. Superresolutiondipole orientation mapping via polarization demodulation. Light Sci. Appl., 5(10):e16166.

[57]

Zhou, X., Lei, M., Dan, D., , 2016. Image recombinationtransform algorithm for superresolution structured illumination microscopy. J. Biomed. Opt., 21(9):96009.

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag GmbHGermany

AI Summary AI Mindmap
PDF (1829KB)

Supplementary files

FITEE-1222-17003-ZPZ_suppl_1

FITEE-1222-17003-ZPZ_suppl_2

2857

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/