Storagewall for exascale supercomputing

Wei HU , Guang-ming LIU , Qiong LI , Yan-huang JIANG , Gui-lin CAI

Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (11) : 1154 -1175.

PDF (528KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (11) : 1154 -1175. DOI: 10.1631/FITEE.1601336
Article
Article

Storagewall for exascale supercomputing

Author information +
History +
PDF (528KB)

Abstract

The mismatch between compute performance and I/O performance has long been a stumbling block as supercomputers evolve from petaflops to exaflops. Currently, many parallel applications are I/O intensive, and their overall running times are typically limited by I/O performance. To quantify the I/O performance bottleneck and highlight the significance of achieving scalable performance in peta/exascale supercomputing, in this paper, we introduce for the first time a formal definition of the ‘storage wall’ from the perspective of parallel application scalability. We quantify the effects of the storage bottleneck by providing a storage-bounded speedup, defining the storage wall quantitatively, presenting existence theorems for the storage wall, and classifying the system architectures depending on I/O performance variation. We analyze and extrapolate the existence of the storage wall by experiments on Tianhe-1A and case studies on Jaguar. These results provide insights on how to alleviate the storage wall bottleneck in system design and achieve hardware/software optimizations in peta/exascale supercomputing.

Keywords

Storage-bounded speedup / Storage wall / High performance computing / Exascale computing

Cite this article

Download citation ▾
Wei HU, Guang-ming LIU, Qiong LI, Yan-huang JIANG, Gui-lin CAI. Storagewall for exascale supercomputing. Front. Inform. Technol. Electron. Eng, 2016, 17(11): 1154-1175 DOI:10.1631/FITEE.1601336

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agarwal, S., Garg, R., Gupta, M.S., , 2004. Adaptive incremental checkpointing for massively parallel systems. Proc. 18th Annual Int. Conf. on Supercomputing, p.277–286.

[2]

Agerwala, T., 2010. Exascale computing: the challenges and opportunities in the next decade. IEEE 16th Int. Symp. on High Performance Computer Architecture.

[3]

Alam, S.R., Kuehn, J.A., Barrett, R.F., , 2007. Cray XT4: an early evaluation for petascale scientific simulation. Proc. ACM/IEEE Conf. on Supercomputing, p.1–12.

[4]

Ali, N., Carns, P.H., Iskra, K., , 2009. Scalable I/O forwarding framework for high-performance computing systems. IEEE Int. Conf. on Cluster Computing and Workshops, p.1–10,

[5]

Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale computing capabilities. Proc. Spring Joint Computer Conf., p.483–485.

[6]

Bent, J., Gibson, G., Grider, G., , 2009. PLFS: a checkpoint file system for parallel applications. Proc. Conf. on High Performance Computing Networking, Storage and Analysis, p.21.

[7]

Cappello, F., Geist, A., Gropp, B., , 2009. Toward exascale resilience. Int. J. High Perform. Comput. Appl., 23(4):374–388.

[8]

Carns, P., Harms, K., Allcock, W., , 2011. Understanding and improving computational science storage access through continuous characterization. ACM Trans. Stor., 7(3):1–26.

[9]

Chen, J., Tang, Y.H., Dong, Y., , 2016. Reducing static energy in supercomputer interconnection networks using topology-aware partitioning. IEEE Trans. Comput., 65(8):2588–2602.

[10]

Culler, D.E., Singh, J.P., Gupta, A., 1998. Parallel Computer Architecture: a Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco, USA.

[11]

Egwutuoha, I.P., Levy, D., Selic, B., , 2013. A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems. J. Supercomput., 65(3):1302–1326.

[12]

Elnozahy, E.N., Plank, J.S., 2004. Checkpointing for peta-scale systems: a look into the future of practical rollback-recovery. IEEE Trans. Depend. Secur. Comput., 1(2):97–108.

[13]

Elnozahy, E.N., Alvisi, L., Wang, Y.M., , 2002. A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408.

[14]

Fahey, M., Larkin, J., Adams, J., 2008. I/O performance on a massively parallel cray XT3/XT4. IEEE Int. Symp. on Parallel and Distributed Processing, p.1–12.

[15]

Ferreira, K.B., Riesen, R., Bridges, P., , 2014. Accelerating incremental checkpointing for extreme-scale computing. Fut. Gener. Comput. Syst., 30:66–77.

[16]

Frasca, M., Prabhakar, R., Raghavan, P., , 2011. Virtual I/O caching: dynamic storage cache management for concurrent workloads. Proc. Int. Conf. for High Performance Computing, Networking, Storage and Analysis, p.38.

[17]

Gamblin, T., de Supinski, B.R., Schulz, M., , 2008. Scalable load-balance measurement for SPMD codes. Proc. ACM/IEEE Conf. on Supercomputing, p.1–12.

[18]

Gustafson, J.L., 1988. Reevaluating Amdahl’s law. Commun. ACM, 31(5):532–533.

[19]

Hargrove, P.H., Duell, J.C., 2006. Berkeley lab checkpoint/restart (BLCR) for Linux clusters. J. Phys. Conf. Ser., 46(1):494–499.

[20]

Hennessy, J.L., Patterson, D.A., 2011. Computer Architecture: a Quantitative Approach. Elsevier.

[21]

HPCwire, 2010. DARPA Sets Ubiquitous HPC Program in Motion. Available from

[22]

Hu, W., Liu, G.M., Li, Q., , 2016. Storage speedup: an effective metric for I/O-intensive parallel application. 18th Int. Conf. on Advanced Communication Technology, p.1–2.

[23]

Kalaiselvi, S., Rajaraman, V., 2000. A survey of checkpointing algorithms for parallel and distributed computers. Sadhana, 25(5):489–510.

[24]

Kim, Y., Gunasekaran, R., 2015. Understanding I/O workload characteristics of a peta-scale storage system. J. Supercomput., 71(3):761–780.

[25]

Kim, Y., Gunasekaran, R., Shipman, G.M., , 2010. Workload characterization of a leadership class storage cluster. Petascale Data Storage Workshop, p.1–5.

[26]

Kotz, D., Nieuwejaar, N., 1994. Dynamic file-access characteristics of a production parallel scientific workload. Proc. Supercomputing, p.640–649.

[27]

Liao, W.K., Ching, A., Coloma, K., , 2007. Using MPI file caching to improve parallel write performance for large-scale scientific applications. Proc. ACM/IEEE Conf. on Supercomputing, p.8.

[28]

Liu, N., Cope, J., Carns, P., , 2012. On the role of burst buffers in leadership-class storage systems. IEEE 28th Symp. on Mass Storage Systems and Technologies, p.1–11.

[29]

Liu, Y., Gunasekaran, R., Ma, X.S., , 2014. Automatic identification of application I/O signatures from noisy server-side traces. Proc. 12th USENIX Conf. on File and Storage Technologies, p.213–228.

[30]

Lu, K., 1999. Research on Parallel File Systems Technology Toward Parallel Computing. PhD Thesis, National University of Defense Technology, Changsha, China (in Chinese).

[31]

Lucas, R., Ang, J., Bergman, K., , 2014. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges. USDOE Office of Science.

[32]

Miller, E.L., Katz, R.H., 1991. Input/output behavior of supercomputing applications. Proc. ACM/IEEE Conf. on Supercomputing, p.567–576.

[33]

Moreira, J., Brutman, M., Castano, J., , 2006. Designing a highly-scalable operating system: the blue Gene/L story. Proc. ACM/IEEE Conf. on Supercomputing, p.53–61.

[34]

Oldfield, R.A., Arunagiri, S., Teller, P.J., , 2007. Modeling the impact of checkpoints on next-generation systems. 24th IEEE Conf. on Mass Storage Systems and Technologies, p.30–46.

[35]

Pasquale, B.K., Polyzos, G.C., 1993. A static analysis of I/O characteristics of scientific applications in a production workload. Proc. ACM/IEEE Conf. on Supercomputing, p.388–397.

[36]

Plank, J.S., Beck, M., Kingsley, G., , 1995. Libckpt: transparent checkpointing under Unix. Proc. USENIX Technical Conf., p.18.

[37]

Purakayastha, A., Ellis, C., Kotz, D., , 1995. Characterizing parallel file-access patterns on a large-scale multiprocessor. 9th Int. Parallel Processing Symp., p.165–172.

[38]

Sisilli, J., 2015. Improved Solutions for I/O Provisioning and Application Acceleration. Available from Accessed on <Date>Nov. 18</Date> 2015].

[39]

Rudin, W., 1976. Principles of Mathematical Analysis. McGraw-Hill Publishing Co.

[40]

Shalf, J., Dosanjh, S., Morrison, J., 2011. Exascale computing technology challenges. 9th Int. Conf. on High Performance Computing for Computational Science, p.1–25.

[41]

Strohmaier, E., Dongarra, J., Simon, H., , 2015. TOP500 Supercomputer Sites. Available from Accessed on <Date>Dec. 30</Date> 2015].

[42]

Sun, X.H., Ni, L.M., 1993. Scalable problems and memorybounded speedup. J. Parall. Distr. Comput., 19(1): 27–37.

[43]

University of California, 2007. IOR HPC Benchmark. Available from Accessed on <Date>Sept. 1</Date> 2014].

[44]

Wang, F., Xin, Q., Hong, B., , 2004. File system workload analysis for large scale scientific computing applications. Proc. 21st IEEE/12th NASA Goddard Conf. on Mass Storage Systems and Technologies, p.139–152.

[45]

Wang, T., Oral, S., Wang, Y.D., , 2014. Burstmem: a high-performance burst buffer system for scientific applications. IEEE Int. Conf. on Big Data, p.71–79.

[46]

Wang, T., Oral, S., Pritchard, M., , 2015. Development of a burst buffer system for data-intensive applications. arXiv:1505.01765. Available from

[47]

Wang, Z.Y., 2009. Reliability speedup: an effective metric for parallel application with checkpointing. Int. Conf. on Parallel and Distributed Computing, Applications and Technologies, p.247–254.

[48]

Xie, B., Chase, J., Dillow, D., , 2012. Characterizing output bottlenecks in a supercomputer. Int. Conf. for High Performance Computing, Networking, Storage and Analysis, p.1–11.

[49]

Yang, X.J., Du, J., Wang, Z.Y., 2011. An effective speedup metric for measuring productivity in large-scale parallel computer systems. J. Supercomput., 56(2):164–181.

[50]

Yang, X.J., Wang, Z.Y., Xue, J.L., , 2012. The reliability wall for exascale supercomputing. IEEE Trans. Comput., 61(6):767–779.

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (528KB)

Supplementary files

FITEE-1154-16003-WH_suppl_1

FITEE-1154-16003-WH_suppl_2

3096

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/