Ball-disk rotor gyroscope adaptive quick-starttechnique

Xiao-wei LIU , Rui WENG , Hai LI , Hai-feng ZHANG

Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1430 -1436.

PDF (708KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (9) : 1430 -1436. DOI: 10.1631/FITEE.1600035
Article
Article

Ball-disk rotor gyroscope adaptive quick-starttechnique

Author information +
History +
PDF (708KB)

Abstract

Rotating speed is a critical parameter affecting the performanceof rotor gyroscopes. Rotor gyroscopes must operate at the rated rotatingspeed. To shorten the start time of the ball-disk rotor gyroscope,this paper presents a new design of the drive system for a ball-diskrotor gyroscope. The drive system is monitored by a microcontroller.First, the microcontroller generates a sine pulse width modulationsignal to drive the permanent magnet rotor. Second, the position ofthe rotor is detected according to the back electromotive force inthe non-energized coil. Third, a piecewise closed-loop control algorithmis implemented to keep the angular acceleration of the rotor withinthe safe range automatically during the acceleration process and whenrunning at a constant speed. This control algorithm can avoid rotorstalling due to loss of steps. Experimental result shows that withthe help of adaptive quick-start technique, the start time of thedevice can be shortened by up to 36.6%.

Keywords

Rotor gyroscope / Magneticallydriven / Quick start / Piecewise algorithm / Closed-loop control

Cite this article

Download citation ▾
Xiao-wei LIU, Rui WENG, Hai LI, Hai-feng ZHANG. Ball-disk rotor gyroscope adaptive quick-starttechnique. Front. Inform. Technol. Electron. Eng, 2017, 18(9): 1430-1436 DOI:10.1631/FITEE.1600035

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barbour , N., Schmidt , G., 2001. Inertial sensor technology trends. IEEE. Sens. J., 1(2):332–339.

[2]

Damrongsak , B., Kraft , M., 2005. A micromachined electrostatically suspended gyroscopewith digital force feedback. IEEE Sensors, p.401–404.

[3]

Damrongsak , B., Kraft , M., Rajgopal , S., , 2008. Design and fabrication of a micromachined electrostatically suspendedgyroscope. J. Mech.Eng., 222(1):53–63.

[4]

Dauwalter , C.R., Ha , J.C., 2005. Magnetically suspended MEMS spinning wheelgyro. IEEE Aerosp.Electron. Syst. Mag., 20(2):21–26.

[5]

Deng , S., Li , X.L., Wang , J.G., , 2011. Frictional torque characteristic of angular contact ball bearings. J. Mech. Eng., 47(5):114–120.

[6]

Geen , J.A., 2005. Very low cost gyroscopes. IEEE Sensors, p.537–540.

[7]

Han , F.T., Liu , Y.F., Wang , L., , 2012. Micromachined electrostatically suspended gyroscope with a spinningring-shaped rotor. J. Micromech. Microeng., 22(10):1–9.

[8]

Jin , L.C., Zhang , H.W., Zhong , Z.Y., 2011. Designof a LC-tuned magnetically suspended rotating gyroscope. J. Appl. Phys., 109:07E525.

[9]

Kraft , M., Damrongsak , B., 2010. Micromachined gyroscopes based on a rotating mechanicallyunconstrained proof mass. IEEE Sensors, p.23–28.

[10]

Qin , K., Zhang , W.P., Chen , W.Y., , 2011. Simulation of electrostatically suspended micro-gyroscope based onLabVIEW. 3rd Int. Conf. on Measuring Technologyand Mechatronics Automation, p.249–252.

[11]

Shao , D.D., Chen , W.Y., Zhang , W.P., , 2011. Virtual prototyping simulation for electrostatically suspended rotormicro gyroscope initial levitation. 6thIEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, p.9–12.

[12]

Shao , S.Y., Huang , X.G., Liu , W., , 2006. Design of drive circuit for rotation of micromachined gyroscope withmagnetic-suspension rotor. Transd. Microsyst. Technol., 2:83–85 (in Chinese).

[13]

Shearwood , C., Yates , R.B., 1997. Development of an electromagnetic micro-generator. Electron. Lett., 33(22):1883–1884.

[14]

Shearwood , C., Ho , K.Y., Williams , C.B., , 2000. Development of a levitated micromotor for application as a gyroscope. Sensor Actuat. A, 83(1-3):85–92.

[15]

Srinu , D., Manmadha , K.B., 2014. A single phase to three phase PFC half-bridgeconverter using BLDC drive with SPWM technique. Int. J. Eng. Res. Appl., 4(7):31–38.

[16]

Wang , C.C., Yao , Y.D., Liu , C.S., , 2006. Micro-magnetic suspension motor design for miniature optical drive. Jpn. J. Appl. Phys., 45(7):5801–5803.

[17]

Wu , X.S., Chen , W.Y., Zhao , X.L., , 2006a. Development of a micromachined rotating gyroscope with electromagneticallylevitated rotor. J. Micromech. Microeng., 16(10):1993–1999.

[18]

Wu , X.S., Chen , W.Y., Zhao , X.L., , 2006b. Micromachined rotating gyroscope with electromagnetically levitatedrotor. Electron.Lett., 42(16):912–913.

[19]

Xiao , Q.J., Chen , W.Y., Li , S.Y., , 2010. Modeling and simulation of levitation control for a micromachinedelectrostatically suspended gyroscope. Microsyst. Technol., 16:357–366.

[20]

Xu , J.B., Wu , Z.Z., Wu , X., , 2014. An improved phase disposition SPWM strategy for cascaded multilevelinverter. Math.Probl. Eng., Article 731574.

[21]

Xue , G., Li , T., Zhang , H.W., 2009a. Researchstatus and development of magnetically suspended rotorgyroscopes. Int. Conf. on Applied Superconductivity and ElectromagneticDevices, p.373–376.

[22]

Xue , G., Zhang , X.T., Zhang , H.W., 2009b. Electromagneticdesign of a magnetically suspended gyroscope prototype. IEEE Int. Conf. on Applied Superconductivity andElectromagnetic Devices, p.369–372.

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag GmbHGermany

AI Summary AI Mindmap
PDF (708KB)

Supplementary files

FITEE-1430-17019-XWL_suppl_1

FITEE-1430-17019-XWL_suppl_2

2357

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/