Attribute reduction in interval-valued information systems based on information entropies

Jian-hua DAI , Hu HU , Guo-jie ZHENG , Qing-hua HU , Hui-feng HAN , Hong SHI

Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (9) : 919 -928.

PDF (361KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (9) : 919 -928. DOI: 10.1631/FITEE.1500447
Article
Article

Attribute reduction in interval-valued information systems based on information entropies

Author information +
History +
PDF (361KB)

Abstract

Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.

Keywords

Rough set theory / Interval-valued data / Attribute reduction / Entropy

Cite this article

Download citation ▾
Jian-hua DAI, Hu HU, Guo-jie ZHENG, Qing-hua HU, Hui-feng HAN, Hong SHI. Attribute reduction in interval-valued information systems based on information entropies. Front. Inform. Technol. Electron. Eng, 2016, 17(9): 919-928 DOI:10.1631/FITEE.1500447

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Billard, L., Douzal-Chouakria, A., Diday, E., 2008. Symbolic Principal Component for Interval-Valued Observations. Available from

[2]

Bustince, H., Barrenechea, E., Pagola, M., 2006. Restricted equivalence functions. Fuzzy Sets Syst., 157(17):23332346.

[3]

Dai, J.H., 2008. Rough 3-valued algebras. Inform. Sci., 178(8):1986–1996.

[4]

Dai, J.H., Tian, H.W., 2013. Fuzzy rough set model for set-valued data. Fuzzy Sets Syst., 229:54–68.

[5]

Dai, J.H., Xu, Q., 2012. Approximations and uncertainty measures in incomplete information systems. Inform. Sci., 198:62–80.

[6]

Dai, J.H., Xu, Q., 2013. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Com-put., 13(1):211–221.

[7]

Dai, J.H., Wang, W.T., Xu, Q., , 2012. Uncertainty measurement forinterval-valued decision systemsbased on extended conditional entropy. Knowl.-Based Syst., 27:443–450.

[8]

Dai, J.H., Tian, H.W., Wang, W.T., , 2013a. Decision rule mining using classification consistency rate. Knowl.-Based Syst., 43:95–102.

[9]

Dai, J.H., Wang, W.T., Mi, J.S., 2013b. Uncertainty measurement for interval-valued information systems. Inform. Sci., 251:63–78.

[10]

Dai, J.H., Wang, W.T., Xu, Q., 2013c. An uncertainty measureforincompletedecision tables andits applications. IEEE Trans. Cybern., 43(4):1277–1289.

[11]

Galar, M., Fernandez, J., Beliakov, G., , 2011. Interval-valued fuzzy sets applied to stereo matching of color images. IEEETrans. ImageProcess., 20(7):1949–1961.

[12]

Hedjazi, L., Aguilar-Martin, J., Le Lann, M.V., 2011. Similarity-margin based feature selection for symbolic interval data. Patt. Recogn. Lett., 32(4):578–585.

[13]

Hu, Y.C., 2015. Flow-based tolerance rough sets for pattern classification. Appl. Soft Comput., 27:322–331.

[14]

Kryszkiewicz, M., 1998. Rough set approach to incomplete information systems. Inform. Sci., 112(1-4):39–49.

[15]

Leung, Y., Fischer, M.M., Wu, W.Z., , 2008. A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason., 47(2):233–246.

[16]

Lin, S.H., Huang, C.C., Che, Z.X., 2015. Rule induction for hierarchical attributes using a roughsetfortheselection of agreen fleet. Appl. Soft Comput., 37:456–466.

[17]

Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht & Boston.

[18]

Qian, Y.H., Liang, J.Y., Dang, C.Y., 2008. Interval ordered information systems. Comput. Math. Appl., 56(8):1994–2009.

[19]

Yang, X.B., Yu, D.J., Yang, J.Y., , 2009. Dominance-based rough set approach to incomplete interval-valued information system. Data Knowl. Eng., 68(11):13311347.

[20]

Zhang, C.Y., Fu, H.Y., 2006. Similarity measures on three kinds of fuzzy sets. Patt. Recogn. Lett., 27(12):13071317.

[21]

Zhang, X.H., Dai, J.H., Yu, Y.C., 2015. On the union and intersection operations of rough sets based on various approximation spaces. Inform. Sci., 292:214–229.

[22]

Zhang, X.H., Miao, D.Q., Liu, C.H., , 2016. Constructive methods of rough approximation operators and multigranulation rough sets. Knowl.-Based Syst., 91:114–125.

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (361KB)

Supplementary files

FITEE-0919-16006-JHD_suppl_1

FITEE-0919-16006-JHD_suppl_2

3476

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/