PDF
(1295KB)
Abstract
We present a fully automatic method for finding geometrically consistent correspondences while discarding outliers from the candidate point matches in two images. Given a set of candidate matches provided by scale-invariant feature transform (SIFT) descriptors, which may contain many outliers, our goal is to select a subset of these matches retaining much more geometric information constructed by a mapping searched in the space of all diffeomorphisms. This problem can be formulated as a constrained optimization involving both the Beltrami coefficient (BC) term and quasi-conformal map, and solved by an efficient iterative algorithm based on the variable splitting method. In each iteration, we solve two subproblems, namely a linear system and linearly constrained convex quadratic programming. Our algorithm is simple and robust to outliers. We show that our algorithm enables producing more correct correspondences experimentally compared with state-of-the-art approaches.
Keywords
Feature correspondence
/
Quasi-conformal map
/
Splitting method
Cite this article
Download citation ▾
Chun-xue WANG, Li-gang LIU.
Featurematching using quasi-conformalmaps.
Front. Inform. Technol. Electron. Eng, 2017, 18(5): 644-657 DOI:10.1631/FITEE.1500411
| [1] |
Belongie,S., Malik,J., Puzicha,J. , 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Patt. Anal. Mach. Intell., 24(4):509–522.
|
| [2] |
Bers,L., 1977. Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc., 83(6):1083–1100.
|
| [3] |
Boyd,S., Parikh, N., Chu,E. , , 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1–122.
|
| [4] |
Chui,H., Rangarajan, A., 2003. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understand., 89(2-3):114–141.
|
| [5] |
Daripa,P., 1991. On a numerical method for quasi-conformal grid generation. J. Comput. Phys., 96(1):229–236.
|
| [6] |
Daripa,P., 1992. A fast algorithm to solve nonhomogeneous Cauchy-Reimann equations in the complex plane. SIAM J. Sci. Stat. Comput., 13(6):1418–1432.
|
| [7] |
Duchenne,O., Bach,F., Kweon,I.S. , , 2011. A tensorbased algorithm for high-order graph matching. IEEE Trans. Patt. Anal. Mach. Intell., 33(12):2383–2395.
|
| [8] |
Fischler,M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395.
|
| [9] |
Gardiner,F.P., Lakic, N., 2000. Quasiconformal Teichmüller Theory. American Mathematical Society, Providence, USA.
|
| [10] |
Gu,X.D., Yau,S.T., 2008. Computational Conformal Geometry. International Press, Somerville, MA, USA.
|
| [11] |
Heider,P., Pierre-Pierre, A., Li,R. , , 2011. Local shape descriptors, a survey and evaluation. Eurographics Workshop on 3D Object Retrieval, p.1–8.
|
| [12] |
Hinton,G.E., Williams, C.K.I., Revow,M.D. , 1991. Adaptive elastic models for hand-printed character recognition. 4th Int. Conf. on Neural Information Processing Systems, p.512–519.
|
| [13] |
Ho,K.T., Lui,L.M., 2016. QCMC: quasi-conformal parameterizations for multiply-connected domains. Adv. Comput. Math., 42(2):279–312.
|
| [14] |
Jian,B., Vemuri, B.C., Marroquin,J.L. , 2005. Robust nonrigid multimodal image registration using local frequency maps. Biennial Int. Conf. on Information Processing in Medical Imaging, p.504–515.
|
| [15] |
Lam,K.C., Lui,L.M., 2014. Landmark and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imag. Sci., 7(4):2364–2392.
|
| [16] |
Lazebnik,S., Schmid, C., Ponce,J. , 2004. Semi-local affine parts for object recognition. British Machine Vision Conf., p.779–788.
|
| [17] |
Lazebnik,S., Schmid, C., Ponce,J. , 2005. A maximum entropy framework for part-based texture and object recognition. ICCV, p.832–838.
|
| [18] |
Lehto,O., Virtanen, K.I., Lucas,K.W. , 1973. Quasiconformal Mappings in the Plane. Springer New York.
|
| [19] |
Li,Y., Xie,X., Yang,Z., 2015. Alternating direction method of multipliers for solving dictionary learning. Commun. Math. Stat., 3:37–55.
|
| [20] |
Lipman,Y., Yagev, S., Poranne,R. , , 2014. Feature matching with bounded distortion. ACM Trans. Graph., 33(3):26.
|
| [21] |
Lui,L.M., Ng,T.C., 2015. A splitting method for diffeomorphism optimization problem using Beltrami coefficients. J. Sci. Comput., 63(2):573–611.
|
| [22] |
Lui,L.M., Wong,T.W., Zeng,W., , 2012. Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput., 50(3):557–585.
|
| [23] |
Mastin,C.W., Thompson, J.F., 1984. Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput., 5(2):305–310.
|
| [24] |
Montagnat,J., Delingette, H., Ayache,N. , 2001. A review of deformable surfaces: topology, geometry and deformation. Image Vis. Comput., 19(14):1023–1040.
|
| [25] |
Nealen,A., Müller, M., Keiser,R. , , 2006. Physically based deformable models in computer graphics. Comput. Graph. For., 25(4):809–836.
|
| [26] |
Sasaki,Y., 2007. The Truth of the F-measure. School of Computer Science, University of Manchester.
|
| [27] |
Taimouri,V., Hua,J., 2014. Deformation similarity measurement in quasi-conformal shape space. Graph. Models, 76(2):57–69.
|
| [28] |
Tuytelaars,T., Mikolajczyk, K., 2008. Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis., 3(3):177–280.
|
| [29] |
van Kaick,O., Zhang, H., Hamarneh,G. , , 2011. A survey on shape correspondence. Comput. Graph. For., 30(6):1681–1707.
|
| [30] |
Vedaldi,A., Fulkerson, B., 2010. Vlfeat: an open and portable library of computer vision algorithms. Proc. 18th ACM Int. Conf. on Multimedia, p.1469–1472.
|
| [31] |
Wang,S., Wang,Y., Jin,M., , 2007. Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Patt. Anal. Mach. Intell., 29(7):1209–1220.
|
| [32] |
Weber,O., Myles, A., Zorin,D. , 2012. Computing extremal quasiconformal maps. Comput. Graph. For., 31(5):1679–1689.
|
| [33] |
Wright,S.J., 2015. Coordinate descent algorithms. Math. Program., 151(1):3–34.
|
| [34] |
Yezzi,A., Mennucci, A., 2005. Conformal metrics and true “gradient flows” for curves. ICCV, p.913–919.
|
| [35] |
Zeng,W., Gu,X.D., 2011. Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. CVPR, p.2457–2464.
|
| [36] |
Zeng,W., Hua,J., Gu,X., 2009. Symmetric conformal mapping for surface matching and registration. Int. J. CAD/CAM, 9(1):103–109.
|
| [37] |
Zhao,Z., Feng,X., Teng,S., , 2012. Multiscale point correspondence using feature distribution and frequency domain alignment. Math. Probl. Eng., 2012:382369.
|
RIGHTS & PERMISSIONS
Zhejiang University and Springer-Verlag Berlin Heidelberg
PDF
(1295KB)