基于ARIMA和Kalman滤波的道路交通状态实时预测

徐东伟 , 王永东 , 贾利民 , 秦勇 , 董宏辉

Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (2) : 287 -302.

PDF (1540KB)
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (2) : 287 -302. DOI: 10.1631/FITEE.1500381
Article
Article

基于ARIMA和Kalman滤波的道路交通状态实时预测

Author information +
History +
PDF (1540KB)

Abstract

道路交通流预测不仅可以为出行者提供实时有效的信息,而且可以帮助他们选择最佳路径,减少出行时间,实现道路交通路径诱导,缓解交通拥堵。本文提出了一种基于ARIMA模型和Kalman滤波算法的道路交通流预测方法。首先,基于道路交通历史数据建立时间序列的ARIMA模型。其次,结合ARIMA模型和Kalman滤波法构建道路交通预测算法,获取Kalman滤波的测量方程和更新方程。然后,基于历史道路交通数据进行算法的参数设定。最后,以北京的四条路段作为案例,对所提出的方法进行了分析。实验结果表明,基于ARIMA模型和Kalman滤波的实时道路交通状态预测方法是可行的,并且可以获得很高的精度。

Keywords

ARIMA模型 / Kalman滤波 / 建模 / 训练 / 预测

Cite this article

Download citation ▾
徐东伟, 王永东, 贾利民, 秦勇, 董宏辉. 基于ARIMA和Kalman滤波的道路交通状态实时预测. Front. Inform. Technol. Electron. Eng, 2017, 18(2): 287-302 DOI:10.1631/FITEE.1500381

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brockwell, P.J., Davis, R.A., 2006. ARMA models. In: Casella, G., Fienberg, S., Olkin, I. (Eds.), Introduction to Time Series and Forecasting. Springer Science & Business Media, Berlin, Germany, p.83–100.

[2]

Chang, T.H., Chueh, C.H., Yang, L.K., 2011. Dynamic traffic prediction for insufficient data roadways via automatic control theories. Contr. Eng. Pract., 19(12):1479–1489.

[3]

Chen, B.K., Xie, Y.B., Tong, W., , 2012. A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems. Phys. A, 91(8):2730-2739.

[4]

Chen, C.Y., Hu, J.M., Meng, Q., , 2011. Short-time traffic flow prediction with ARIMA-GARCH model. IEEE Intelligent Vehicles Symp., p.607–612.

[5]

Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat., 13(3):134–144.

[6]

Dong, C.F., Ma, X., Wang, G.W., , 2009. Prediction feedback in intelligent traffic systems. Phys., 388(21): 4651–4657.

[7]

Dong, C.F., Ma, X., Wang, B.H., 2010. Weighted congestion coefficient feedback in intelligent transportation systems. Phys. Lett. A, 374(11):1326–1331.

[8]

Durbin, J., Koopman, S.J., 2012. Time Series Analysis by State Space Methods. Oxford University Press, London, UK.

[9]

Guo, J.H., Huang, W., Williams, B.M., 2014. Adaptive Kal-man filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C, 43:50–64.

[10]

Hoong, P.K., Tan, I.K.T., Chien, O.K., , 2012. Road traffic prediction using Bayesian networks. IET Int. Conf. on Wireless Communications and Applications, p.1–5.

[11]

Kirchgässner, G., Wolters, J., Hassler, U., 2012. Introduction to Modern Time Series Analysis. Springer Science & Business Media, Berlin, Germany.

[12]

Kumar, K., Parida, M., Katiyar, V.K., 2013. Short term traffic flow prediction for a non urban highway using artificial neural network. Proc.-Soc. Behav. Sci., 104:755–764.

[13]

Lin, L., Li, Y., Sadek, A., 2013. A k nearest neighbor based local linear wavelet neural network model for online short-term traffic volume prediction. Proc.-Soc. Behav. Sci., 96:2066–2077.

[14]

Liu, H., Tian, H.Q., Li, Y.F., 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy, 98:415–424.

[15]

Liu, J.Y., Wang, W.D., Gong, X.Y., , 2012. A hybrid model based on Kalman filter and neutral network for traffic prediction. IEEE 2nd Int. Conf. on Cloud Compu-ting and Intelligent Systems, p.533–536.

[16]

Liu, X.L., Jia, P., Wu, S.H., , 2011. Short-term traffic flow forecasting based on multi-dimensional parameters. J. Transp. Syst. Eng. Inform. Technol., 11(4):140–146 (in Chinese).

[17]

Lv, L., Chen, M., Liu, Y., , 2015. A plane moving average algorithm for short-term traffic flow prediction. In: Cau, T., Lim, E.P., Zhou, Z.H., (Eds.), Advances in Knowledge Discovery and Data Mining. Springer Int. Publishing, Cham, Switzerland, p.357–369.

[18]

Ma, T., Zhou, Z., Abdulhai, B., 2015. Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B, 76:27–47.

[19]

Ma, X.L., Tao, Z.M., Wang, Y.H., , 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C, 54:187–197.

[20]

Min, W., Wynter, L., 2011. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C, 19(4):606–616.

[21]

Moretti, F., Pizzuti, S., Panzieri, S., , 2015. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing, 167:3–7.

[22]

Ojeda, L.L., Kibangou, A.Y., de Wit, C.C., 2013. Adaptive Kalman filtering for multi-step ahead traffic flow predic-tion. IEEE American Control Conf., p.4724–4729.

[23]

Pan, T.L., Sumalee, A., Zhong, R.X., , 2013. Short-term traffic state prediction based on temporal–spatial correla-tion. IEEE Trans. Intell. Transp. Syst., 14(3):1242–1254.

[24]

Park, J., Li, D., Murphey, Y.L., , 2011. Real time vehicle speed prediction using a neural network traffic model. IEEE Int. Joint Conf. on. Neural Networks, p.2991–2996.

[25]

Qi, Y., Ishak, S., 2014. A hidden Markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C, 43:95–111.

[26]

Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C, 10(4):303–321.

[27]

Sommer, M., Tomforde, S., Haehner, J., 2015. A systematic study on forecasting of traffic flows with artificial neural networks. Proc. 28th Int. Conf. on. Architecture of Computing Systems, p.1–8.

[28]

Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. Opti-mized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C, 13(3):211–234.

[29]

Wang, J., Shi, Q.X., 2013. Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C, 27:219–232.

[30]

Zhang, L., Ma, J., Sun, J., 2012. Examples of validating an adaptive Kalman filter model for short-term traffic flow prediction. 12th Int. Conf. of Transportation Professionals, p.912–922.

[31]

Zhang, L., Liu, Q.C., Yang, W.C., , 2013. An improved k-nearest neighbor model for short-term traffic flow pre-diction. Proc.-Soc. Behav. Sci., 96:653–662.

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1540KB)

Supplementary files

FITEE-0287-17011-DWX_suppl_1

FITEE-0287-17011-DWX_suppl_2

10558

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/