基于ARIMA和Kalman滤波的道路交通状态实时预测
徐东伟 , 王永东 , 贾利民 , 秦勇 , 董宏辉
Front. Inform. Technol. Electron. Eng ›› 2017, Vol. 18 ›› Issue (2) : 287 -302.
基于ARIMA和Kalman滤波的道路交通状态实时预测
道路交通流预测不仅可以为出行者提供实时有效的信息,而且可以帮助他们选择最佳路径,减少出行时间,实现道路交通路径诱导,缓解交通拥堵。本文提出了一种基于ARIMA模型和Kalman滤波算法的道路交通流预测方法。首先,基于道路交通历史数据建立时间序列的ARIMA模型。其次,结合ARIMA模型和Kalman滤波法构建道路交通预测算法,获取Kalman滤波的测量方程和更新方程。然后,基于历史道路交通数据进行算法的参数设定。最后,以北京的四条路段作为案例,对所提出的方法进行了分析。实验结果表明,基于ARIMA模型和Kalman滤波的实时道路交通状态预测方法是可行的,并且可以获得很高的精度。
ARIMA模型 / Kalman滤波 / 建模 / 训练 / 预测
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
Zhejiang University and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |