Boundedness of Marcinkiewicz integralwith rough kernel onTriebel-Lizorkin spaces

Chun-jie ZHANG , Fang-fang REN , Yu-huai ZHANG , Gui-lian GAO

Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 654 -657.

PDF (203KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 654 -657. DOI: 10.1631/FITEE.1500082

Boundedness of Marcinkiewicz integralwith rough kernel onTriebel-Lizorkin spaces

Author information +
History +
PDF (203KB)

Abstract

This paper is a continuation of our previous work (Zhang and Chen, 2010b). Following the same general steps of the proof there, we make essential improvement on our previous theorem by recalculating a key inequality. Our result shows that the Marcinkiewicz integral, with a bounded radial function in its kernel, is still bounded on the Triebel-Lizorkin space.

Keywords

Marcinkiewicz integral / Triebel-Lizorkin spaces

Cite this article

Download citation ▾
Chun-jie ZHANG, Fang-fang REN, Yu-huai ZHANG, Gui-lian GAO. Boundedness of Marcinkiewicz integralwith rough kernel onTriebel-Lizorkin spaces. Front. Inform. Technol. Electron. Eng, 2015, 16(8): 654-657 DOI:10.1631/FITEE.1500082

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Qassem, H.M., Cheng, L.C., Pan, Y., 2012. Boundedness of rough integral operators on Triebel-Lizorkin spaces. Publ. Mat., 56(2): 261―277. [

[2]

Chen, D.N., Chen, J.C., Fan, D.S., 2005. Rough singular integral operators on Hardy-Sobolev spaces. Appl.Math. J. Chin. Univ., 20(1): 1―9. [

[3]

Chen, J.C., Zhang, C.J., 2008. Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces. J. Math. Anal. Appl., 337(2): 1048―1052. [

[4]

Chen, J.C., Fan, D.S., Ying, Y.M., 2002. Singular integral operators on function spaces. J. Math. Anal. Appl., 276(2): 691―708. [

[5]

Chen, J.C., Fan, D.S., Ying, Y.M., 2003. Certain operators with rough singular kernels. Can. J. Math., 55(3): 504―532.

[6]

Chen, J.C., Jia, H.Y., Jiang, L.Y., 2005. Boundedness of rough oscillatory singular integral on Triebel-Lizorkin spaces. J. Math. Anal. Appl., 306(2): 385―397. [

[7]

Chen, Q.L., Zhang, Z.F., 2004. Boundedness of a class of super singular integral operators and the associated commutators. Sci. China Ser. A, 47(6): 842―853. [

[8]

Chen, Y.P., Ding, Y., 2008. Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl., 347(2): 493―501. [

[9]

Chen, Y.P., Zhu, K., 2014. Lp bounds for the commutators of oscillatory singular integrals with rough kernels. Abs. Appl. Anal., 2014: 393147.1―393147.8. [

[10]

Zhang, C.J., Chen, J.C., 2009. Boundedness of g-functions on Triebel-Lizorkin spaces. Taiwan. J. Math., 13(3): 973―981.

[11]

Zhang, C.J., Chen, J.C., 2010a. Boundedness of singular integrals and maximal singular integrals on Triebel-Lizorkin spaces. Int. J. Math., 21(2): 157―168. [

[12]

Zhang, C.J., Chen, J.C., 2010b. Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces. Appl. Math. J. Chin. Univ., 25(1): 48―54. [

[13]

Zhang, C.J., Zhang, Y.D., 2013. Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces. Appl. Math. J. Chin. Univ., 28(1): 90―100. [

AI Summary AI Mindmap
PDF (203KB)

Supplementary files

FITEE-0654-15004-CJZ_suppl_1

FITEE-0654-15004-CJZ_suppl_2

2215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/