Dr.Hadoop: an infinite scalable metadata management for Hadoop—Howthe baby elephant becomes immortal

Dipayan DEV , Ripon PATGIRI

Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (1) : 15 -31.

PDF (1221KB)
Front. Inform. Technol. Electron. Eng ›› 2016, Vol. 17 ›› Issue (1) : 15 -31. DOI: 10.1631/FITEE.1500015
Orginal Article
Orginal Article

Dr.Hadoop: an infinite scalable metadata management for Hadoop—Howthe baby elephant becomes immortal

Author information +
History +
PDF (1221KB)

Abstract

In this Exa byte scale era, data increases at an exponential rate. This is in turn generating a massive amount of metadata in the file system. Hadoop is the most widely used framework to deal with big data. Due to this growth of huge amount of metadata, however, the efficiency of Hadoop is questioned numerous times by many researchers. Therefore, it is essential to create an efficient and scalable metadata management for Hadoop. Hash-based mapping and subtree partitioning are suitable in distributed metadata management schemes. Subtree partitioning does not uniformly distribute workload among the metadata servers, and metadata needs to be migrated to keep the load roughly balanced. Hash-based mapping suffers from a constraint on the locality of metadata, though it uniformly distributes the load among NameNodes, which are the metadata servers of Hadoop. In this paper, we present a circular metadata management mechanism named dynamic circular metadata splitting (DCMS). DCMS preserves metadata locality using consistent hashing and locality-preserving hashing, keeps replicated metadata for excellent reliability, and dynamically distributes metadata among the NameNodes to keep load balancing. NameNode is a centralized heart of the Hadoop. Keeping the directory tree of all files, failure of which causes the single point of failure (SPOF). DCMS removes Hadoop’s SPOF and provides an efficient and scalable metadata management. The new framework is named ‘Dr. Hadoop’ after the name of the authors.

Keywords

Hadoop / NameNode / Metadata / Locality-preserving hashing / Consistent hashing

Cite this article

Download citation ▾
Dipayan DEV, Ripon PATGIRI. Dr.Hadoop: an infinite scalable metadata management for Hadoop—Howthe baby elephant becomes immortal. Front. Inform. Technol. Electron. Eng, 2016, 17(1): 15-31 DOI:10.1631/FITEE.1500015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguilera, M.K., Chen, W., Toueg, S., 1997. Heartbeat: a timeoutfree failure detector for quiescent reliable communication. Proc. 11th Int. Workshop on Distributed Algorithms, p.126–140.

[2]

Apache Software Foundation, 2012. Hot Standby for NameNode. Available from http://issues.apache.org/jira/browse/HDFS-976.

[3]

Beaver, D., Kumar, S., Li, H.C., et al., 2010. Finding a needle in haystack: Facebookąŕs photo storage. OSDI, p.47–60.

[4]

Biplob, D., Sengupta, S., Li, J., 2010. FlashStore: high throughput persistent key-value store. Proc. VLDB Endowment, p.1414–1425.

[5]

Bisciglia, C., 2009. Hadoop HA Configuration.

[6]

Braam, R. Z. PJ, 2007. Lustre: a Scalable, High Performance File System. Cluster File Systems, Inc.

[7]

Brandt, S.A., Miller, E.L, Long, D.D.E., et al., 2003. Effcient metadata management in large distributed storage systems. IEEE Symp. on Mass Storage Systems, p.290–298.

[8]

Cao, Y., Chen, C., Guo, F., et al., 2011. Es2: a cloud data storage system for supporting both OLTP and OLAP. Proc. IEEE ICDE, p.291–302.

[9]

Corbett, P.F., Feitelson, D.G., 1996. The Vesta parallel file system . ACM Trans.Comput. Syst., 14(3):225–264.

[10]

DeCandia, G., Hastorun, D., Jampani, M., et al., 2007. Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper. Syst. Rev., 41(6):205–220.

[11]

Dev, D., Patgiri, R., 2014. Performance evaluation of HDFS in big data management. Int. Conf. on High Performance Computing and Applications, p.1–7.

[12]

Dev, D., Patgiri, R., 2015. HAR+: archive and metadata distribution! Why not both? ICCCI, in press. Escriva, R., Wong, B., Sirer, E.G., 2012. HyperDex: a distributed, searchable key-value store. ACM SIGCOMM Comput. Commun. Rev., 42(4):25–36.

[13]

Fred, H., McNab, R., 1998. SimJava: a discrete event simu-lation library for Java. Simul. Ser., 30:51–56.

[14]

Ghemawat, S., Gobioff, H., Leung, S.T., 2003. The Google file system. Proc. 19th ACM Symp. on Operating Systems Principles, p.29–43.

[15]

Haddad, I.F., 2000. Pvfs: a parallel virtual file system for Linux clusters. Linux J.,p.5.

[16]

Wiki, 2012. NameNode Failover, on Wiki Apache Hadoop. Available from http://wiki.apache.org/hadoop/NameNodeFailover.

[17]

HDFS, 2010. Hadoop AvatarNode High Availability.

[18]

Karger, D., Lehman, E., Leighton, F., et al., 1997. Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web. Proc. 29th Annual ACM Symp. on Theory of Computing, p.654–663.

[19]

Kavalanekar, S., Worthington, B.L., Zhang, Q., et al., 2008. Characterization of storage workload traces from production Windows Servers. Proc. IEEE IISWC, p.119–128.

[20]

Lewin, D., 1998. Consistent hashing and random trees: algorithms for caching in distributed networks. Master Thesis, Department of EECS, MIT.

[21]

Lim, H., Fan, B., Andersen, D.G., et al., 2011. SILT: a memory-effcient, high-performance key-value store. Proc. 23rd ACM Symp. on Operating Systems Principles.

[22]

McKusick, M.K., Quinlan, S., 2009. GFS: evolution on fast-forward. ACM Queue, 7(7):10–20.

[23]

Miller, E.L., Katz, R.H., 1997. Rama: an easy-to-use, high-performance parallel file system. Parall. Comput., 23(4-5):419–446.

[24]

Miller, E.L., Greenan, K., Leung, A., et al., 2008. Reliable and effcient metadata storage and indexing using nvram.

[25]

Nagle, D., Serenyi, D., Matthews, A., 2004. The Panasas activescale storage cluster-delivering scalable high band-width storage. Proc. ACM/IEEE SC, p.1–10.

[26]

Okorafor, E., Patrick, M.K., 2012. Availability of Jobtracker machine in hadoop/mapreduce zookeeper coordinated clusters . Adv.Comput., 3(3):19–30.

[27]

Ousterhout, J.K., Costa, H.D., Harrison, D., et al., 1985. A trace-driven analysis of the Unix 4.2 BSD file system. SOSP, p.15–24.

[28]

Raicu, I., Foster, I.T., Beckman, P., 2011. Making a case for distributed file systems at exascale. Proc. 3rd Int. Workshop on Large-Scale System and Application Performance, p.11–18.

[29]

Rodeh, O., Teperman, A., 2003. ZFS—a scalable distributed file system using object disks. IEEE Symp. on Mass Storage Systems, p.207–218.

[30]

Satyanarayanan, M., Kistler, J.J., Kumar, P., et al., 1990. Coda: a highly available file system for a distributed workstation environment. IEEE Trans. Comput., 39(4):447–459.

[31]

Shvachko, K., Kuang, H.R., Radia, S., et al., 2010. The Hadoop Distributed File System. IEEE 26th Symp. on Mass Storage Systems and Technologies, p.1–10.

[32]

Torodanhan, 2009. Best Practice: DB2 High Availability Disaster Recovery.

[33]

U.S. Department of Commerce/NIST, 1995. FIPS 180-1. Secure Hash Standard. National Technical Information Service, Springfield, VA.

[34]

Wang, F., Qiu, J., Yang, J., et al., 2009. Hadoop high availability through metadata replication. Proc. 1st Int. Workshop on Cloud Data Management, p.37–44.

[35]

Weil, S.A., Pollack, K.T., Brandt, S.A., et al., 2004. Dynamic metadata management for petabyte-scale file systems. SC, p.4.

[36]

Weil, S.A., Brandt, S.A., Miller, E.L., et al., 2006. CEPH: a scalable, high-performance distributed file system. OSDI, p.307–320.

[37]

White, T., 2009. Hadoop: the Definitive Guide. O’Reilly Media, Inc.

[38]

White, B.S., Walker, M., Humphrey, M., et al., 2001. Legionfs: a secure and scalable file system support-ing cross-domain highperformance applications. Proc. ACM/IEEE Conf. on Supercomputing, p.59.

[39]

Yadava, H., 2007. The Berkeley DB Book. Apress.

[40]

Zhu, Y., Jiang, H., Wang, J., et al., 2008. Hba: Dis¬tributed metadata management for large cluster-based storage systems. IEEE Trans. Parall. Distrib. Syst., 19(6):750–763.

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1221KB)

Supplementary files

FITEE-0015-16002-DD_suppl_1

FITEE-0015-16002-DD_suppl_2

1351

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/