Building a dense surface map incrementally from semi-dense point cloud andRGBimages

Qian-shan LI , Rong XIONG , Shoudong HUANG , Yi-ming HUANG

Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (7) : 594 -606.

PDF (1900KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (7) : 594 -606. DOI: 10.1631/FITEE.14a0260

Building a dense surface map incrementally from semi-dense point cloud andRGBimages

Author information +
History +
PDF (1900KB)

Abstract

Building and using maps is a fundamental issue for bionic robots in field applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped objects.

Keywords

Bionic robot / Robotic mapping / Surface fusion

Cite this article

Download citation ▾
Qian-shan LI, Rong XIONG, Shoudong HUANG, Yi-ming HUANG. Building a dense surface map incrementally from semi-dense point cloud andRGBimages. Front. Inform. Technol. Electron. Eng, 2015, 16(7): 594-606 DOI:10.1631/FITEE.14a0260

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amenta, N., Bern, M., 1999. Surface reconstruction by Voronoi filtering. Discr. Comput. Geom., 22(4): 481-504. [

[2]

Amenta, N., Choi, S., Kolluri, R.K., 2001. The power crust. Proc. 6th ACM Symp. on Solid Modeling and Applications, p.249-266. [

[3]

Bajaj, C.L., Bernardini, F., Xu, G., 1997. Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica, 19(1-2): 243-261. [

[4]

Básaca-Preciado, L.C., Sergiyenko, O.Y., Rodríguez-Quinonez, J.C., , 2014. Optical 3D laser measurement system for navigation of autonomous mobile robot. Opt. Lasers Eng., 54: 159-169. [

[5]

Cole, D.M., Newman, P.M., 2006. Using laser range data for 3D SLAM in outdoor environments. Proc. IEEE Int. Conf. on Robotics and Automation, p.1556-1563. [

[6]

Crossno, P., Angel, E., 1999. Spiraling edge: fast surface reconstruction from partially organized sample points. Proc. Conf. on Visualization, p.317-324.

[7]

Dey, T.K., Wang, L., 2013. Voronoi-based feature curves extraction for sampled singular surfaces. Comput. Graph., 37(6): 659-668. [

[8]

Dey, T.K., Giesen, J., Hudson, J., 2001. Delaunay based shape reconstruction from large data. Proc. IEEE Symp. on Parallel and Large-Data Visualization and Graphics, p.19-146. [

[9]

Dey, T.K., Dyer, R., Wang, L., 2011. Localized Cocone surface reconstruction. Comput. Graph., 35(3): 483-491. [

[10]

Dey, T.K., Ge, X., Que, Q., , 2012. Feature-preserving reconstruction of singular surfaces. Comput. Graph. Forum, 31(5): 1787-1796. [

[11]

Felzenszwalb, P.F., Huttenlocher, D.P., 2004. Efficient graphbased image segmentation. Int. J. Comput. Vis., 59(2): 167-181. [

[12]

Gopi, M., Krishnan, S., 2002. A fast and efficient projection-based approach for surface reconstruction. Proc. Brazilian Symp. on Computer Graphics and Image Processing, p.179-186. [

[13]

Holz, D., Behnke, S., 2013. Fast range image segmentation and smoothing using approximate surface reconstruction and region growing. Proc. 12th Int. Conf. on Intelligent Autonomous Systems, p.61-73. [

[14]

Huang, H., Wu, S., Gong, M., , 2013. Edge-aware point set resampling. ACM Trans. Graph., 32(1): Article 9. [

[15]

Lin, J., Jin, X., Wang, C., , 2008. Mesh composition on models with arbitrary boundary topology. IEEE Trans. Visual. Comput. Graph., 14(3): 653-665. [

[16]

Lopez, M.R., Sergiyenko, O.Y., Tyrsa, V.V., , 2010. Optoelectronic method for structural health monitoring. Struct. Health Monit., 9(2): 105-120. [

[17]

Lou, R., Pernot, J.P., Mikchevitch, A., , 2010. Merging enriched finite element triangle meshes for fast prototyping of alternate solutions in the context of industrial maintenance. Comput.-Aid. Des., 42(8): 670-681. [

[18]

Marton, Z.C., Rusu, R.B., Beetz, M., 2009. On fast surface reconstruction methods for large and noisy point clouds. Proc. IEEE Int. Conf. on Robotics and Automation, p.3218-3223. [

[19]

Maurelli, F., Droeschel, D., Wisspeintner, T., , 2009. A 3D laser scanner system for autonomous vehicle navigation. Proc. Int. Conf. on Advanced Robotics, p.1-6.

[20]

Newcombe, R.A., Izadi, S., Hilliges, O., , 2011. Kinect-Fusion: real-time dense surface mapping and tracking. Proc. 10th IEEE Int. Symp. on Mixed and Augmented Reality, p.127-136. [

[21]

Nüchter, A., Lingemann, K., Hertzberg, J., , 2007. 6D SLAM—3D mapping outdoor environments. J. Field Robot., 24(8-9): 699-722. [

[22]

Pandey, G., McBride, J., Savarese, S., , 2010. Extrinsic calibration of a 3D laser scanner and an omnidirectional camera. Proc. 7th IFAC Symp. on Intelligent Autonomous Vehicles.

[23]

Rusu, R.B., Marton, Z.C., Blodow, N., , 2008. Towards 3D point cloud based object maps for household environments. Robot. Auton. Syst., 56(11): 927-941. [

[24]

Schadler, M., Stückler, J., Behnke, S., , 2014. Rough terrain 3D mapping and navigation using a continuously rotating 2D laser scanner. Künstl. Intell., 28(2): 93-99. [

[25]

Sheehan, M., Harrison, A., Newman, P., 2012. Selfcalibration for a 3D laser. Int. J. Robot. Res., 31(5): 675-687. [

[26]

Wang, Y.B., Sheng, Y.H., Lv, G.N., , 2007. A Delaunaybased surface reconstrution algorithm for unorganized sampling points. J. Image Graph., 12(9): 1537-1543 (in Chinese).

[27]

Whelan, T., Kaess, M., Fallon, M., , 2012. Kintinuous: Spatially Extended KinectFusion. Technical Report No. MIT-CSAIL-TR-2012-020. Massachusetts Institute of Technology, USA.

[28]

Wulf, O., Wagner, B., 2003. Fast 3D scanning methods for laser measurement systems. Proc. Int. Conf. on Control Systems and Computer Science, p.2-5.

AI Summary AI Mindmap
PDF (1900KB)

Supplementary files

FITEE-0594-15024-QSL_suppl_1

FITEE-0594-15024-QSL_suppl_2

2684

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/