New computational treatment of optical wave propagation in lossywaveguides

Jian-xin ZHU , Guan-jie WANG

Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 646 -653.

PDF (384KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (8) : 646 -653. DOI: 10.1631/FITEE.1400406

New computational treatment of optical wave propagation in lossywaveguides

Author information +
History +
PDF (384KB)

Abstract

In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichletto-Neumann (DtN) map, is improved to solve the equation. Numerical examples show that our treatment is more efficient.

Keywords

Adjoint operator / Orthogonal / Chebyshev / Pseudospectral method / Dirichlet-to-Neumann map

Cite this article

Download citation ▾
Jian-xin ZHU, Guan-jie WANG. New computational treatment of optical wave propagation in lossywaveguides. Front. Inform. Technol. Electron. Eng, 2015, 16(8): 646-653 DOI:10.1631/FITEE.1400406

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrew, A.L., 2000. Twenty years of asymptotic correction for eigenvalue computation. ANZIAM J., 42: 96―116.

[2]

Boyd, J.P., 2001. Chebyshev and Fourier Spectral Methods (2nd Ed.). Dover Publications, Inc., USA.

[3]

Canuto, C., Hussaini, M.Y., Quarteroni, A., , 1988. Spectral Methods in Fluid Dynamics. Springer-Verlag Berlin Heidelberg, USA.

[4]

Costa, B., Don, W.S., Simas, A., 2007. Spatial resolution properties of mapped spectral Chebyshev methods. Proc. SCPDE: Recent Progress in Scientific Computing, p.179―188.

[5]

Lu, Y.Y., 1999. One-way large range step methods for Helmholtz waveguides. J. Comput. Phys., 152(1): 231―250. [

[6]

Lu, Y.Y., McLaughlin, J.R., 1996. The Riccati method for the Helmholtz equation. J. Acoust. Soc. Am., 100(3): 1432―1446. [

[7]

Lu, Y.Y., Zhu, J.X., 2004. A local orthogonal transform for acoustic waveguides with an internal interface. J. Comput. Acoust., 121: 37―53. [

[8]

März, R., 1995. Integrated Optics: Design and Modeling. Artech House, USA.

[9]

Silva, A., Monticone, F., Castaldi, G., , 2014. Performing mathematical operations with metamaterials. Science, 343(6167): 160―163. [

[10]

Trefethen, L.N., 2000. Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, USA.

[11]

Trefethen, L.N., 2013. Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, USA.

[12]

Vassallo, C., 1991. Optical Waveguide Concepts. Elsevier, Amsterdam.

[13]

Waldvogel, J., 2006. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numer. Math., 46(1): 195―202. [

[14]

Zhang, X., 2010. Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm-Liouville problems. Appl. Math. Comput., 217(5): 2266―2276. [

[15]

Zhu, J., Lu, Y.Y., 2004. Validity of one-way models in the weak range dependence limit. J. Comput. Acoust., 12(1): 55―66. [

[16]

Zhu, J., Song, R., 2009. Fast and stable computation of optical propagation in micro-waveguides with loss. Microelectron. Reliab., 49(12): 1529―1536. [

AI Summary AI Mindmap
PDF (384KB)

Supplementary files

FITEE-0646-15003-JXZ_suppl_1

FITEE-0646-15003-JXZ_suppl_2

3152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/