Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

Hamza KHAN , Jamshed IQBAL , Khelifa BAIZID , Teresa ZIELINSKA

Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (2) : 166 -172.

PDF (528KB)
Front. Inform. Technol. Electron. Eng ›› 2015, Vol. 16 ›› Issue (2) : 166 -172. DOI: 10.1631/FITEE.1400183

Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

Author information +
History +
PDF (528KB)

Abstract

This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

Keywords

Robot modeling / Robot navigation / Slip and skid control / Wheeled mobile robots

Cite this article

Download citation ▾
Hamza KHAN, Jamshed IQBAL, Khelifa BAIZID, Teresa ZIELINSKA. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Front. Inform. Technol. Electron. Eng, 2015, 16(2): 166-172 DOI:10.1631/FITEE.1400183

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adrian, L.R., Ribickis, L., 2013. Fuzzy logic analysis of photovoltaic data for obstacle avoidance or mapping robot. Elektron. Elektrotech., 19(1): 3-6. [

[2]

Ahmad, O., Ullah, I., Iqbal, J., 2014. A multi-robot educational and research framework. Int. J. Acad. Res., 6(2): 217-222.

[3]

Ani, O.A., Xu, H., Shen, Y.P., , 2013. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(1): 11-29. [

[4]

Dakhlallah, J., Glaser, S., Mammar, S., 2008. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. American Control Conf., p.4597-4602. [

[5]

Ding, L., Gao, H., Deng, Z., , 2010. Wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South Univ. Technol., 17(1): 129-135. [

[6]

Ding, L., Gao, H., Deng, Z., , 2011. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramech., 48(1): 27-45. [

[7]

Ding, L., Gao, H., Deng, Z., , 2013. Longitudinal slip versus skid of planetary rovers’ wheels traversing on deformable slopes. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2842-2848. [

[8]

Gao, H., Guo, J., Ding, L., , 2013. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J. Terramech., 50(5-6): 327-343. [

[9]

Iqbal, J., Islam, R.U., Khan, H., 2012. Modeling and analysis of a 6 DOF robotic arm manipulator. Can. J. Electr. Electron. Eng., 3(6): 300-306.

[10]

Iqbal, J., un Nabi, S.R., Khan, A., , 2013. A novel trackdrive mobile robotic framework for conducting projects on robotics and control systems. Life Sci. J., 10(3): 130-137.

[11]

Ishigami, G., Miwa, A., Nagatani, K., , 2007. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot., 24(3): 233-250. [

[12]

Krejsa, J., Vechet, S., 2012. Infrared beacons based localization of mobile robot. Elektron. Elektrotech., 117(1): 17-22. [

[13]

Kulakowski, B.T., 1991. Mathematical model of skid resistance as a function of speed. In: Pavement Management: Data Collection, Analysis, and Storage. Transportation Research Board, USA, p.26-33.

[14]

Li, Y.P., Zielinska, T., Ang, V.M.H., , 2006. Wheelground interaction modelling and torque distribution for a redundant mobile robot. Proc. IEEE Int. Conf. on Robotics and Automation, p.3362-3367. [

[15]

Manzoor, S., Islam, R.U., Khalid, A., , 2014. An opensource multi-DOF articulated robotic educational platform for autonomous object manipulation. Robot. Comput.-Integr. Manuf., 30(3): 351-362. [

[16]

Pusca, R., Ait-Amirat, Y., Berthon, A., , 2002. Modeling and simulation of a traction control algorithm for an electric vehicle with four separate wheel drives. Proc. IEEE 56th Vehicular Technology Conf., p.1671-1675. [

[17]

Sánchez-Hermosilla, J., Rodríguez, F., González, R., , 2010. A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, Croatia, p.583-607.

[18]

Sidek, N., Sarkar, N., 2008. Dynamic modeling and control of nonholonomic mobile robot with lateral slip. Proc. 3rd Int. Conf. on Systems, p.35-40. [

[19]

Ward, C.C., Iagnemma, K., 2008. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans. Robot., 24(4): 821-831. [

[20]

Wong, J.Y., Reece, A.R., 1967. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: Part II. Performance of towed rigid wheels. J. Terramech., 4(2): 7-25. [

[21]

Zielinska, T., Chmielniak, A., 2010. Controlling the slip in mobile robots. Proc. 13th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, p.13-20.

[22]

Zohaib, M., Pasha, S.M., Javaid, N., , 2014a. An improved algorithm for collision avoidance in environments having U and H shaped obstacles. Stud. Inform. Contr., 23(1): 97-106.

[23]

Zohaib, M., Pasha, S.M., Javaid, N., , 2014b. IBA: intelligent bug algorithm—a novel strategy to navigate mobile robots autonomously. Proc. 3rd Int. Multi-topic Conf., p.291-299. [

AI Summary AI Mindmap
PDF (528KB)

Supplementary files

Supplementary Material 1

Supplementary Material 2

3563

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/