Ganoderma lucidum Alleviates High-fat Diet-induced Hepatic Lipotoxicity via Modulating the Unfolded Protein Response and Endoplasmic Reticulum-phagy

Chenxi Cao , Suwei Jin , Hongbin Song , Yingying Guo , Fangrui Cao , Yongguang Liu , Tianji Xia , Shanshan Zhang , Qi Chang , Mingzhu Yan

›› 2025, Vol. 4 ›› Issue (3) : 150 -162.

PDF
›› 2025, Vol. 4 ›› Issue (3) : 150 -162. DOI: 10.14218/FIM.2025.00031
Original Articles
research-article

Ganoderma lucidum Alleviates High-fat Diet-induced Hepatic Lipotoxicity via Modulating the Unfolded Protein Response and Endoplasmic Reticulum-phagy

Author information +
History +
PDF

Abstract

Background and objectives: A long-term high-fat diet (HFD) exerts lipotoxic effects on multiple organs, particularly the liver, leading to metabolic diseases. This study aimed to delineate the dynamic effects of HFD on lipid metabolism, elucidate the mechanisms underlying hepatic lipotoxicity, and investigate the protective effects of Ganoderma lucidum against lipotoxicity both in vitro and in vivo.

Methods: C57BL/6 mice were fed either a 45% or 60% HFD, followed by measurements of body composition, serum lipid profile, and liver pathology at four, eight, twelve, and sixteen weeks. Inflammatory responses, the unfolded protein response (UPR), and endoplasmic reticulum (ER)-phagy were examined in the livers of mice at 16 weeks. Male C57BL/6 mice were randomly assigned to four groups (n = 12 per group): normal diet, 45% HFD, and two HFD + Ganoderma lucidum water extract (GLE) groups (1 g/kg/d and 2 g/kg/d of crude drug, orally administered by gavage for eight weeks following a four-week HFD induction).

Results: Body weight, body fat, serum lipids, and hepatic steatosis increased progressively, accompanied by impaired glucose tolerance and liver injury, as indicated by elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. HFD also induced activation of the STING and NF-κB signaling pathways, as well as the PERK and IRE1 branches of the UPR. Similarly, ER-phagy selective receptors, particularly FAM134B, which is primarily expressed in hepatocytes as shown by single-cell sequencing, were upregulated after 16 weeks of HFD feeding. Furthermore, GLE mitigated palmitic acid-induced lipotoxicity in primary hepatocytes, as evidenced by improved cell viability, reduced ALT, AST, and lactate dehydrogenase levels in the culture supernatant, and decreased transferase dUTP nick-end labeling-positive cell counts. In 45% HFD-fed mice, GLE reduced serum total cholesterol, low-density lipoprotein, and hepatic triglyceride levels.

Conclusions: HFD- induced lipotoxicity causes hepatic tissue injury and inflammatory responses, which may be alleviated by coordinated regulation of compensatory UPR and ER-phagy. Ganoderma lucidum shows promise as a dietary supplement for managing metabolic disorders.

Keywords

High-fat diet / Lipotoxicity / Unfolded protein response / Endoplasmic reticulum-phagy / ER / Ganoderma lucidum

Cite this article

Download citation ▾
Chenxi Cao, Suwei Jin, Hongbin Song, Yingying Guo, Fangrui Cao, Yongguang Liu, Tianji Xia, Shanshan Zhang, Qi Chang, Mingzhu Yan. Ganoderma lucidum Alleviates High-fat Diet-induced Hepatic Lipotoxicity via Modulating the Unfolded Protein Response and Endoplasmic Reticulum-phagy. , 2025, 4(3): 150-162 DOI:10.14218/FIM.2025.00031

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murru E, Manca C, Carta G, Banni S. Impact of Dietary Palmitic Acid on Lipid Metabolism. Front Nutr 2022;9:861664. doi:10.3389/fnut.2022.861664, PMID:35399673.

[2]

Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol 2023; 20(7):475-494. doi:10.1038/s41569- 023-00847-5, PMID:36927772.

[3]

Jin S, Li Y, Xia T, Liu Y, Zhang S, Hu H, et al. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res 2025; 67:317-329. doi:10.1016/j.jare.2024.01.027, PMID:38295876.

[4]

Chew NWS, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab 2023; 35(3):414-428.e3. doi:10.1016/j.cmet.2023.02.003, PMID:368 89281.

[5]

Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020; 11(9):802. doi:10.1038/s41419-020-03003-w, PMID:32978374.

[6]

Lee AK, Kim DH, Bang E, Choi YJ, Chung HY. β-Hydroxybutyrate Suppresses Lipid Accumulation in Aged Liver through GPR109Amediated Signaling. Aging Dis 2020; 11(4):777-790. doi:10.14336/ AD.2019.0926, PMID:32765945.

[7]

Gubas A, Dikic I. ER remodeling via ER-phagy. Mol Cell 2022; 82 (8):1492-1500. doi:10.1016/j.molcel.2022.02.018, PMID:35452617.

[8]

Pang L, Liu K, Liu D, Lv F, Zang Y, Xie F, et al. Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease. Cell Death Dis 2018; 9(2):90. doi:10.1038/s41419-017-0136-y, PMID:293 67738.

[9]

Ahmad MF. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 2018; 107:507-519. doi:10.1016/j.biopha.2018.08.036, PMID:30114 634.

[10]

Wang J, Cao B, Zhao H, Feng J. Emerging Roles of Ganoderma Lucidum in Anti-Aging. Aging Dis 2017; 8(6):691-707. doi:10.14336/ AD.2017.0410, PMID:29344411.

[11]

Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. Signaling pathway involved in the immunomodulatory effect of Ganoderma atrum polysaccharide in spleen lymphocytes. J Agric Food Chem 2015; 63(10):2734-2740. doi:10.1021/acs.jafc.5b00028, PMID:25715057.

[12]

Li WJ, Tang XF, Shuai XX, Jiang CJ, Liu X, Wang LF, et al. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages. J Agric Food Chem 2017; 65(2):348-357. doi:10.1021/acs.jafc.6b04888, PMID:27931102.

[13]

Wang K, Bao L, Ma K, Zhang J, Chen B, Han J, et al. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-A(y) mice. Eur J Med Chem 2017; 127:1035-1046. doi:10.1016/j. ejmech.2016.11.015, PMID:27839787.

[14]

Yang Z, Wu F, He Y, Zhang Q, Zhang Y, Zhou G, et al. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway. Food Funct 2018; 9(1):397-406. doi:10.1039/c7fo01489a, PMID:29215104.

[15]

Li L, Guo WL, Zhang W, Xu JX, Qian M, Bai WD, et al. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. Food Funct 2019; 10(5):2560-2572. doi:10.1039/c9fo00075e, PMID:30994668.

[16]

Jung S, Son H, Hwang CE, Cho KM, Park SW, Kim HJ. Ganoderma lucidum Ameliorates Non-Alcoholic Steatosis by Upregulating Energy Metabolizing Enzymes in the Liver. J Clin Med 2018; 7(6):152. doi:10.3390/jcm7060152, PMID:29914094.

[17]

Guo WL, Guo JB, Liu BY, Lu JQ, Chen M, Liu B, et al. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct 2020; 11(8):6818-6833. doi:10.1039/d0fo00436g, PMID:32686808.

[18]

Klupp NL, Kiat H, Bensoussan A, Steiner GZ, Chang DH. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep 2016; 6:29540. doi:10.1038/srep29540, PMID:27511742.

[19]

Kennard MR, Nandi M, Chapple S, King AJ. The glucose tolerance test in mice: Sex, drugs and protocol. Diabetes Obes Metab 2022; 24(11):2241-2252. doi:10.1111/dom.14811, PMID:35815375.

[20]

Yan M, Jin S, Wang Z, Xia T, Liu Y, Chang Q. Limonin counteracts obesity by activating thermogenesis in brown and white adipose tissues. J Funct Foods 2023;100:105393. doi:10.1016/j.jff.2022.105393.

[21]

Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6):1313-1321. doi:10.1002/hep.20701, PMID:15915461.

[22]

Yan M, Jin S, Liu Y, Wang L, Wang Z, Xia T, et al. Cajaninstilbene Acid Ameliorates Acetaminophen-Induced Liver Injury Through Enhancing Sestrin2/AMPK-Mediated Mitochondrial Quality Control. Front Pharmacol 2022;13:824138. doi:10.3389/fphar.2022.824138, PMID:35350766.

[23]

Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69(4):927-947. doi:10.1016/j.jhep.2018.06.008, PMID:29940269.

[24]

Wen Z, Sun Q, Shan Y, Xie W, Ding Y, Wang W, et al. Endoplasmic Reticulum Stress in Osteoarthritis: A Novel Perspective on the Pathogenesis and Treatment. Aging Dis 2023; 14(2):283-286. doi:10.14336/ AD.2022.0725, PMID:37008062.

[25]

Da J, Wu WY, Hou JJ, Long HL, Yao S, Yang Z, et al. Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis. J Chromatogr A 2012; 1222:59-70. doi:10.1016/j.chroma. 2011.12.017, PMID:22226558.

[26]

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24(7):908-922. doi:10.1038/s41591-018-0104-9, PMID:29967350.

[27]

Tsai JY, Kienesberger PC, Pulinilkunnil T, Sailors MH, Durgan DJ, Villegas-Montoya C, et al. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem 2010; 285(5):2918-2929. doi:10.1074/jbc.M109.077800, PMID:199 40111.

[28]

Uchida A, Whitsitt MC, Eustaquio T, Slipchenko MN, Leary JF, Cheng JX, et al. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front Physiol 2012;3:26. doi:10.3389/fphys.2012.00026, PMID:22375122.

[29]

Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet 2013; 113(12):1640-1661. doi:10.1016/j.jand.2013.07.010, PMID:24139973.

[30]

Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, et al. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ- HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 2021; 172:213-225. doi:10.1016/j.freeradbiomed. 2021.06.001, PMID:34116177.

[31]

Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184(10):2537-2564. doi:10.1016/j.cell.2021.04.015, PMID:33989548.

[32]

Cobelli C, Dalla Man C, Toffolo G, Basu R, Vella A, Rizza R. The oral minimal model method. Diabetes 2014; 63(4):1203-1213. doi:10.2337/ db13-1198, PMID:24651807.

[33]

Pagliassotti MJ. Endoplasmic reticulum stress in nonalcoholic fatty liver disease. Annu Rev Nutr 2012; 32:17-33. doi:10.1146/annurevnutr- 071811-150644, PMID:22809102.

[34]

Fielden J, Wiseman K, Torrecilla I, Li S, Hume S, Chiang SC, et al. TEX264 coordinates p97- and SPRTN-mediated resolution of topoisomerase 1-DNA adducts. Nat Commun 2020; 11(1):1274. doi:10.1038/s41467- 020-15000-w, PMID:32152270.

[35]

Xiang R, Zhao S. RTN3 inducing apoptosis is modulated by an adhesion protein CRELD1. Mol Cell Biochem 2009; 331(1-2):225-230. doi:10.1007/s11010-009-0163-9, PMID:19521671.

[36]

Lee JT, Lee TJ, Kim CH, Kim NS, Kwon TK. Over-expression of Reticulon 3 (RTN3) enhances TRAIL-mediated apoptosis via up-regulation of death receptor 5 (DR5) and down-regulation of c-FLIP. Cancer Lett 2009; 279(2):185-192. doi:10.1016/j.canlet.2009.01.035, PMID:19250737.

[37]

Yang Z, Wang J, He B, Zhang X, Li X, Kuang E. RTN3 inhibits RIG-I-mediated antiviral responses by impairing TRIM25-mediated K63-linked polyubiquitination. Elife 2021;10:e68958. doi:10.7554/eLife.68958, PMID:34313226.

[38]

Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 2016; 64(6):1994-2014. doi:10.1002/hep.28820, PMID:27637015.

[39]

Meneses ME, Martínez-Carrera D, González-Ibáñez L, Torres N, Sánchez- Tapia M, Márquez-Mota CC, et al. Effects of Mexican Ganoderma lucidum extracts on liver, kidney, and the gut microbiota of Wistar rats: A repeated dose oral toxicity study. PLoS One 2023; 18(4):e0283605. doi:10.1371/journal.pone.0283605, PMID:37022999.

[40]

Zhang J, Gao X, Pan Y, Xu N, Jia L. Toxicology and immunology of Ganoderma lucidum polysaccharides in Kunming mice and Wistar rats. Int J Biol Macromol 2016; 85:302-310. doi:10.1016/j.ijbiomac. 2015.12.090, PMID:26763176.

[41]

Wu SY, Ou CC, Lee ML, Hsin IL, Kang YT, Jan MS, et al. Polysaccharide of Ganoderma lucidum Ameliorates Cachectic Myopathy Induced by the Combination Cisplatin plus Docetaxel in Mice. Microbiol Spectr 2023; 11(3):e0313022. doi:10.1128/spectrum.03130-22, PMID:37212664.

[42]

Jeitler M, Michalsen A, Frings D, Hübner M, Fischer M, Koppold-Liebscher DA, et al. Significance of Medicinal Mushrooms in Integrative Oncology: A Narrative Review. Front Pharmacol 2020;11:580656. doi:10.3389/fphar.2020.580656, PMID:33424591.

AI Summary AI Mindmap
PDF

464

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/