Innovations in Organoid Engineering: Construction Methods, Model Development, and Clinical Translation

Xue Shen , Haiyan Jiang , Xiaoyu Fan , Xiaoyan Duan , Tusi Lin , Wanfang Li , Jie Bao , Jia Xu , Bosai He , Hongtao Jin

›› 2025, Vol. 4 ›› Issue (3) : 163 -179.

PDF
›› 2025, Vol. 4 ›› Issue (3) : 163 -179. DOI: 10.14218/FIM.2025.00023
Review Article
research-article

Innovations in Organoid Engineering: Construction Methods, Model Development, and Clinical Translation

Author information +
History +
PDF

Abstract

Organoids are derived from self-organizing stem cells and form three-dimensional structures that are structurally and functionally similar to in vivo tissues. With the ability to replicate the in vivo microenvironment and maintain genetic stability, organoids have become a powerful tool for elucidating developmental mechanisms, accurately modeling disease processes, and efficiently screening drug candidates, and have also demonstrated significant value in the field of traditional Chinese medicine (TCM)-including applications in screening active components of TCM, studying TCM pharmacodynamic mechanisms, evaluating TCM safety, and verifying the effects of traditional non-pharmacological therapies such as acupuncture and yoga. Organoids can be cultured using air-liquid interface systems, bioreactors, and vascularization techniques. They are widely used in drug screening, disease modeling, precision medicine, and toxicity assessment. However, current limitations include high costs, difficulty in accurately replicating the microenvironment, and ethical concerns. In this review, we systematically retrieve, synthesize, and analyze relevant literature to elucidate the culture methods of organoid technology, its diverse applications across various fields, and the challenges it faces. In the future, integration with artificial intelligence may provide new insights and strategies for drug development and disease research and the modernization of TCM.

Keywords

Organoid / Pluripotent stem cell / PSC / Tumor microenvironment / TME / High-throughput screening / HTS / Drug development

Cite this article

Download citation ▾
Xue Shen, Haiyan Jiang, Xiaoyu Fan, Xiaoyan Duan, Tusi Lin, Wanfang Li, Jie Bao, Jia Xu, Bosai He, Hongtao Jin. Innovations in Organoid Engineering: Construction Methods, Model Development, and Clinical Translation. , 2025, 4(3): 163-179 DOI:10.14218/FIM.2025.00023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clevers H. Modeling Development and Disease with Organoids. Cell 2016; 165(7):1586-1597. doi:10.1016/j.cell.2016.05.082, PMID:273 15476.

[2]

Lee SW, Jung DJ, Jeong GS. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Eng Regen Med 2020; 17(6):731-745. doi:10.1007/s13770-020-00245-9, PMID:32207030.

[3]

Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018; 19(11):671-687. doi:10.1038/s41576-018-0051-9, PMID:30228295.

[4]

Kaushik G, Ponnusamy MP, Batra SK. Concise Review: Current Status of Three-Dimensional Organoids as Preclinical Models. Stem Cells 2018; 36(9):1329-1340. doi:10.1002/stem.2852, PMID:29770526.

[5]

Dao L, You Z, Lu L, Xu T, Sarkar AK, Zhu H, et al. Modeling bloodbrain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024; 31(6):818-833.e11. doi:10.1016/j.stem.2024.04.019, PMID:38754427.

[6]

Liu Q, Yao X, Wei Z, Xie Y. Action mechanism and potential function on main components of organoid culture medium. Chin J Tissue Eng Res 2021; 25(31):5072-5078.

[7]

Liu Y. Organoids and chips: biomedical and drug’s new models. Basic and Clinical Medicine 2024; 44(9):1201.

[8]

Zhang Y. Organoids: an ideal model for frontier biomedical research. Frontier Science and Technology 2024; 14(12):1-2.

[9]

Kim S, Min S, Choi YS, Jo SH, Jung JH, Han K, et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun 2022; 13(1):1692. doi:10.1038/s41467- 022-29279-4, PMID:35354790.

[10]

McCracken KW, Aihara E, Martin B, Crawford CM, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature 2017; 541(7636):182-187. doi:10.1038/nature21021, PMID:28052057.

[11]

Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472(7341):51-56. doi:10.1038/nature09941, PMID:21475194.

[12]

Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, et al. Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell 2019; 25(3):373-387.e9. doi:10.1016/j.stem.2019.06.009, PMID:313 03547.

[13]

Tsai KK, Huang SS, Northey JJ, Liao WY, Hsu CC, Cheng LH, et al. Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity. Nat Cancer 2022; 3(6):734-752. doi:10.1038/s43018- 022-00375-0, PMID:35618935.

[14]

Múnera JO, Kechele DO, Bouffi C, Qu N, Jing R, Maity P, et al. Development of functional resident macrophages in human pluripotent stem cell-derived colonic organoids and human fetal colon. Cell Stem Cell 2023; 30(11):1434-1451.e9. doi:10.1016/j.stem.2023.10.002, PMID:37922878.

[15]

Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 2012; 18(4):618-623. doi:10.1038/ nm.2695, PMID:22406745.

[16]

Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci 2023; 24(14):11427. doi:10.3390/ijms241411427, PMID:37511186.

[17]

Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, et al. Protocol for establishing primary human lung organoid-derived air-liquid interface cultures from cryopreserved human lung tissue. STAR Protoc 2023; 4(4):102735. doi:10.1016/j.xpro.2023.102735, PMID:37991921.

[18]

Prondzynski M, Berkson P, Trembley MA, Tharani Y, Shani K, Bortolin RH, et al. Efficient and reproducible generation of human iPSCderived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat Commun 2024; 15(1):5929. doi:10.1038/s41467-024- 50224-0, PMID:39009604.

[19]

Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, et al. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2021; 57(2):104-132. doi:10.1007/s11626-020-00517-7, PMID:33175307.

[20]

Santos AJM, van Unen V, Lin Z, Chirieleison SM, Ha N, Batish A, et al. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024; 632(8024):401-410. doi:10.1038/s41586- 024-07716-2, PMID:39048815.

[21]

Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol 1988; 24(5):420-428. doi:10.1007/ BF02628493, PMID:3372447.

[22]

Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell 2018; 175(7):1972-1988.e16. doi:10.1016/j.cell.2018.11.021, PMID: 30550791.

[23]

Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188527. doi:10.1016/j. bbcan.2021.188527, PMID:33640383.

[24]

Zhang J, Qin T, Mao Z, Wang G. Application and prospect of air-liquid culture in organoid research. Chin J Geriatr Care 2024; 22(3):102-106. doi:10.3969/j.issn.1672-2671.2024.03.023.

[25]

Ovando-Roche P, West EL, Branch MJ, Sampson RD, Fernando M, Munro P, et al. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res Ther 2018; 9(1):156. doi:10.1186/s13287-018-0907-0, PMID:29895313.

[26]

Phelan MA, Gianforcaro AL, Gerstenhaber JA, Lelkes PI. An Air Bubble- Isolating Rotating Wall Vessel Bioreactor for Improved Spheroid/ Organoid Formation. Tissue Eng Part C Methods 2019; 25(8):479-488. doi:10.1089/ten.TEC.2019.0088, PMID:31328683.

[27]

Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 2018; 13(3):565-580. doi:10.1038/ nprot.2017.152, PMID:29470464.

[28]

zur Nieden NI, Cormier JT, Rancourt DE, Kallos MS. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol 2007; 129(3):421-432. doi:10.1016/j.jbiotec.2007.01.006, PMID:17306403.

[29]

Liu M, Fan W. Construction strategy for vascularization of organoid. Chin J Tissue Eng Res 2025; 29(13):2774-2783. doi:10.12307/2025.052.

[30]

Liu H, Yue L, Liu C, Tan Y. Research progress in vascularization of renal organoids. Chin J Pharmacol Toxicol 2024; 38(8):633-640. doi:10.3867/j.issn.1000-3002.2024.08.008.

[31]

Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45(1):10-32. doi:10.1016/j.devcel.2018.01.023, PMID:29634931.

[32]

Bautch VL, James JM. Neurovascular development: The beginning of a beautiful friendship. Cell Adh Migr 2009; 3(2):199-204. doi:10.4161/cam.3.2.8397, PMID:19363295.

[33]

Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, et al. Generation of vascularized brain organoids to study neurovascular interactions. Elife 2022;11:e76707. doi:10.7554/eLife.76707, PMID:35506651.

[34]

Ahn Y, An JH, Yang HJ, Lee DG, Kim J, Koh H, et al. Human Blood Vessel Organoids Penetrate Human Cerebral Organoids and Form a Vessel- Like System. Cells 2021; 10(8):2036. doi:10.3390/cells10082036, PMID:34440805.

[35]

Sun K, Wang T, Li J, Li H. Ideas and technical challenges of vascularized organoid construction. Chin J Comp Med 2023; 33(2):126-133. doi:10.3969/j.issn.1671-7856.2023.02.017.

[36]

Jiang X, Yang T, Liang N, Wang Y, Teng J. Research advances in renal organoids and its applications for evaluating drug nephrotoxicity. Journal of Clinical Nephrology 2024; 24(8):687-691. doi:10.3969/j. issn.1671-2390.2024.08.011.

[37]

Nikolić MZ, Caritg O, Jeng Q, Johnson JA, Sun D, Howell KJ, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. Elife 2017;6:e26575. doi:10.7554/eLife.26575, PMID:28665271.

[38]

Yang T, Wang X, Bai N, Dong L, Che H, Cai Y. Lung organoids: A new way to study human lung development and disease. Acad J Chin PLA Med Sch 2021; 42(6):658-664. doi:10.3969/i.issn.2095-5227.2021.06.013.

[39]

Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun 2019; 10(1):3991. doi:10.1038/s41467-019- 11867-6, PMID:31488816.

[40]

Xia X, Zhang SC. Differentiation of neuroepithelia from human embryonic stem cells. Methods Mol Biol 2009; 549:51-58. doi:10.1007/978- 1-60327-931-4_4, PMID:19378195.

[41]

Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell 2017; 21(3):383-398.e7. doi:10.1016/j.stem.2017.07.007, PMID:28757360.

[42]

Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 2015; 6:8896. doi:10.1038/ncomms9896, PMID:26573335.

[43]

Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, et al. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov 2023; 13(2):364-385. doi:10.1158/2159- 8290.CD-22-0199, PMID:36351055.

[44]

Yang J, Fatima K, Zhou X, He C. Meticulously engineered three-dimensional- printed scaffold with microarchitecture and controlled peptide release for enhanced bone regeneration. Biomater Transl 2024; 5(1):69-83. doi:10.12336/biomatertransl.2024.01.007, PMID: 39220663.

[45]

Wang G, Wang Y, Liang J, Liu Z. Research and application of kidney organoids. J Nephrol Dialy Transplant 2024; 33(3):245-253. doi:10.3969/j.issn.1006-298X.2024.03.010.

[46]

Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133(22):e170500. doi:10.1172/JCI170500, PMID:37966116.

[47]

Jelinsky SA, Derksen M, Bauman E, Verissimo CS, van Dooremalen WTM, Roos JL, et al. Molecular and Functional Characterization of Human Intestinal Organoids and Monolayers for Modeling Epithelial Barrier. Inflamm Bowel Dis 2023; 29(2):195-206. doi:10.1093/ibd/ izac212, PMID:36356046.

[48]

Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526(7574):564-568. doi:10.1038/nature15695, PMID:26444236.

[49]

Parigoris E, Lee JH, Liu AY, Zhao X, Takayama S. Extended longevity geometrically-inverted proximal tubule organoids. Biomaterials 2022;290:121828. doi:10.1016/j.biomaterials.2022.121828, PMID:36215909.

[50]

Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37(3):303-313. doi:10.1038/s41587-019-0048-8, PMID:30833775.

[51]

Garreta E, Prado P, Tarantino C, Oria R, Fanlo L, Martí E, et al. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat Mater 2019; 18(4):397-405. doi:10.1038/s41563-019-0287-6, PMID:30778227.

[52]

Zhang D, Du X, Kong F, Zhao S. Molecular mechanism and application of kidney organoids from pluripotent cells. Chin J Cell Stem Cell (Electronic Edition) 2018; 8(1):49-52. doi:10.3877/cma.j.is sn.2095-1221.2018.01.009.

[53]

Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 2019; 14(2):518-540. doi:10.1038/s41596-018- 0104-8, PMID:30664680.

[54]

Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut 2019; 68(12):2228-2237. doi:10.1136/ gutjnl-2019-319256, PMID:31300517.

[55]

Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013; 499(7459):481-484. doi:10.1038/nature12271, PMID:23823721.

[56]

Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 2017; 35(7):659-666. doi:10.1038/nbt.3906, PMID:28562594.

[57]

Jovanovic VM, Weber C, Slamecka J, Ryu S, Chu PH, Sen C, et al. A defined roadmap of radial glia and astrocyte differentiation from human pluripotent stem cells. Stem Cell Reports 2023; 18(8):1701-1720. doi:10.1016/j.stemcr.2023.06.007, PMID:37451260.

[58]

Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M, et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol 2023; 41(6):824-831. doi:10.1038/s41587-022-01558-x, PMID:36702898.

[59]

Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 2024; 21(5):868-881. doi:10.1038/s41592-024-02172-2, PMID:38374263.

[60]

Finer G, Maezawa Y, Ide S, Onay T, Souma T, Scott R, et al. Stromal Transcription Factor 21 Regulates Development of the Renal Stroma via Interaction with Wnt/β-Catenin Signaling. Kidney360 2022; 3(7):1228-1241. doi:10.34067/KID.0005572021, PMID:35919523.

[61]

Huh SH, Ha L, Jang HS. Nephron Progenitor Maintenance Is Controlled through Fibroblast Growth Factors and Sprouty1 Interaction. J Am Soc Nephrol 2020; 31(11):2559-2572. doi:10.1681/ ASN.2020040401, PMID:32753399.

[62]

Mills CG, Lawrence ML, Munro DAD, Elhendawi M, Mullins JJ, Davies JA. Asymmetric BMP4 signalling improves the realism of kidney organoids. Sci Rep 2017; 7(1):14824. doi:10.1038/s41598-017-14809-8, PMID:29093551.

[63]

Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, et al. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022; 7(1):168. doi:10.1038/s41392-022-01024-9, PMID:356 10212.

[64]

Zhu X, Zhang B, He Y, Bao J. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng Regen Med 2021; 18(4):573-585. doi:10.1007/s13770-021-00357-w, PMID:34132985.

[65]

Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015; 160(1-2):299-312. doi:10.1016/j. cell.2014.11.050, PMID:25533785.

[66]

Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2013; 13(2):149-159. doi:10.1016/j.stem.2013.07.001, PMID:23910082.

[67]

Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018; 68(5):1049-1062. doi:10.1016/j.jhep.2018.01.005, PMID:29339113.

[68]

McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007; 134(12):2207-2217. doi:10.1242/ dev.001230, PMID:17507400.

[69]

Franks TJ, Colby TV, Travis WD, Tuder RM, Reynolds HY, Brody AR, et al. Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc Am Thorac Soc 2008; 5(7):763-766. doi:10.1513/pats.200803-025HR, PMID:18757314.

[70]

Yang G, Fang H, Liu X, Fu Z, Zhu F. Progress in research and application of lung organoids. Chin J Pathophysiol 2024; 40(6):1122-1127. doi:10.3969/j.issn.1000-4718.2024.06.019.

[71]

Qian X, Song H, Ming GL. Brain organoids: advances, applications and challenges. Development 2019; 146(8):dev166074. doi:10.1242/ dev.166074, PMID:30992274.

[72]

Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501(7467):373-379. doi:10.1038/nature12517, PMID:23995685.

[73]

Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. doi:10.1016/bs.ctdb.2020.12.011, PMID: 33706925.

[74]

Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, et al. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 2016; 19(2):248-257. doi:10.1016/j.stem.2016.07.005, PMID: 27476966.

[75]

Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, et al. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron 2017; 95(4):779-790.e6. doi:10.1016/j.neuron.2017.07.035, PMID:28817799.

[76]

Yu D, Cao H, Wang X. Advances and applications of organoids: a review. Sheng Wu Gong Cheng Xue Bao 2021; 37(11):3961-3974. doi:10.13345/j.cjb.200764, PMID:34841798.

[77]

Carvalho MR, Yan LP, Li B, Zhang CH, He YL, Reis RL, et al. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Biofabrication 2023; 15(4):042004. doi:10.1088/1758- 5090/acf8fb, PMID:37699408.

[78]

Derricott H, Luu L, Fong WY, Hartley CS, Johnston LJ, Armstrong SD, et al. Developing a 3D intestinal epithelium model for livestock species. Cell Tissue Res 2019; 375(2):409-424. doi:10.1007/s00441-018- 2924-9, PMID:30259138.

[79]

Qiu G, Yu L, Zhang C, Dong L. Progress in Construction and Application of Intestinal Organoid Models. Chinese Journal of Animal Nutrition 2023; 35(7):4231-4237. doi:10.12418/CJAN2023.393.

[80]

Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, et al. Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. Cell Stem Cell 2018; 23(6):787-793.e6. doi:10.1016/j.stem.2018.11.016, PMID:30526881.

[81]

Almeqdadi M, Mana MD, Roper J, Yilmaz ÖH. Gut organoids: minitissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol 2019; 317(3):C405-C419. doi:10.1152/ajpcell. 00300.2017, PMID:31216420.

[82]

Taelman J, Diaz M, Guiu J. Human Intestinal Organoids: Promise and Challenge. Front Cell Dev Biol 2022;10:854740. doi:10.3389/ fcell.2022.854740, PMID:35359445.

[83]

Palikuqi B, Nguyen DT, Li G, Schreiner R, Pellegata AF, Liu Y, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature 2020; 585(7825):426-432. doi:10.1038/ s41586-020-2712-z, PMID:32908310.

[84]

Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: A perspective on construction and application. Bioact Mater 2022; 18:15-25. doi:10.1016/j.bioactmat.2022.01.048, PMID:35387160.

[85]

Wang J, Chen X, Li R, Wang S, Geng Z, Shi Z, et al. Standardization and consensus in the development and application of bone organoids. Theranostics 2025; 15(2):682-706. doi:10.7150/thno.105840, PMID:39744680.

[86]

Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 2020; 9(1):121-136. doi:10.1089/biores.2019.0046, PMID:32368414.

[87]

O’Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F. Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells. Tissue Eng Part A 2021; 27(15-16):1099-1109. doi:10.1089/ten. TEA.2020.0273, PMID:33191853.

[88]

Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15(1):58. doi:10.1186/s13045-022-01278-4, PMID:35551634.

[89]

Kazama A, Anraku T, Kuroki H, Shirono Y, Murata M, Bilim V, et al. Development of patient-derived tumor organoids and a drug testing model for renal cell carcinoma. Oncol Rep 2021; 46(4):226. doi:10.3892/or.2021.8177, PMID:34468011.

[90]

Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. Replication of human noroviruses in stem cellderived human enteroids. Science 2016; 353(6306):1387-1393. doi:10.1126/science.aaf5211, PMID:27562956.

[91]

Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 2016; 352(6287):816-818. doi:10.1126/ science.aaf6116, PMID:27064148.

[92]

Richards DJ, Li Y, Kerr CM, Yao J, Beeson GC, Coyle RC, et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng 2020; 4(4):446-462. doi:10.1038/ s41551-020-0539-4, PMID:32284552.

[93]

Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 2015; 33(8):845-852. doi:10.1038/nbt.3275, PMID:26167629.

[94]

Ma R, Yue L, Yun Z, Lou Z, Liu Q, Cui H, et al. Modeling acute kidney injury induced by cisplatin in human kidney organoids. Chinese Journal of Pharmacology and Toxicology 2024; 38(4):279-285. doi:10.3867/j. issn.1000-3002.2024.04.005.

[95]

Shin JH, Jeong J, Choi J, Lim J, Dinesh RK, Braverman J, et al. Dickkopf-2 regulates the stem cell marker LGR5 in colorectal cancer via HNF4α1. iScience 2021; 24(5):102411. doi:10.1016/j.isci.2021.102411, PMID:339 97693.

[96]

Na F, Pan X, Chen J, Chen X, Wang M, Chi P, et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming. Nat Cancer 2022; 3(6):753-767. doi:10.1038/s43018-022-00361-6, PMID:35449309.

[97]

Hayes EB. Zika virus outside Africa. Emerg Infect Dis 2009; 15(9):1347-1350. doi:10.3201/eid1509.090442, PMID:19788800.

[98]

Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual transmission of Zika virus. Emerg Infect Dis 2015; 21(2):359-361. doi:10.3201/eid2102.141363, PMID:25625872.

[99]

Mao Y, Wang W, Yang J, Zhou X, Lu Y, Gao J, et al. Drug repurposing screening and mechanism analysis based on human colorectal cancer organoids. Protein Cell 2024; 15(4):285-304. doi:10.1093/procel/ pwad038, PMID:37345888.

[100]

Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, et al. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep 2019; 27(4):1265-1276.e4. doi:10.1016/j.celrep.2019.03.088, PMID:31018139.

[101]

Zhou T, Xie Y, Hou X, Bai W, Li X, Liu Z, et al. Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis. J Exp Clin Cancer Res 2023; 42(1):111. doi:10.1186/s13046-023- 02671-8, PMID:37143164.

[102]

Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P, Duan F, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 2021; 589(7841):270-275. doi:10.1038/s41586-020-2901-9, PMID:33116299.

[103]

Seol HS, Oh JH, Choi E, Kim S, Kim H, Nam EJ. Preclinical investigation of patient-derived cervical cancer organoids for precision medicine. J Gynecol Oncol 2023; 34(3):e35. doi:10.3802/jgo.2023.34.e35, PMID:36659831.

[104]

Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat Commun 2021; 12(1):280. doi:10.1038/s41467-020-20440-5, PMID:33436582.

[105]

Westerling-Bui AD, Fast EM, Soare TW, Venkatachalan S, De- Ran M, Fanelli AB, et al. Transplanted organoids empower human preclinical assessment of drug candidate for the clinic. Sci Adv 2022; 8(27):eabj5633. doi:10.1126/sciadv.abj5633, PMID:35857479.

[106]

Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer 2022; 3(2):232-250. doi:10.1038/s43018-022-00337-6, PMID:35221336.

[107]

Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018; 359(6378):920-926. doi:10.1126/science.aao2774, PMID:29472484.

[108]

Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell 2020; 26(1):17-26.e6. doi:10.1016/j. stem.2019.10.010, PMID:31761724.

[109]

Vaught J. Biobanking Comes of Age: The Transition to Biospecimen Science. Annu Rev Pharmacol Toxicol 2016; 56:211-228. doi:10.1146/ annurev-pharmtox-010715-103246, PMID:26514206.

[110]

Huang T, Chen L, Wang H. Advances in organoid and related biospecimen repository research. Scientia Sinica (Vitae) 2024; 54(6):1029-1040. doi:10.1360/SSV-2023-0145.

[111]

van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161(4):933-945. doi:10.1016/j. cell.2015.03.053, PMID:25957691.

[112]

Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, et al. Patient-Derived Organoids Can Guide Personalized-Therapies for Patients with Advanced Breast Cancer. Adv Sci (Weinh) 2021; 8(22):e2101176. doi:10.1002/advs.202101176, PMID:34605222.

[113]

Senkowski W, Gall-Mas L, Falco MM, Li Y, Lavikka K, Kriegbaum MC, et al. A platform for efficient establishment and drug-response profiling of high-grade serous ovarian cancer organoids. Dev Cell 2023; 58(12):1106-1121.e7. doi:10.1016/j.devcel.2023.04.012, PMID:371 48882.

[114]

Ji S, Feng L, Fu Z, Wu G, Wu Y, Lin Y, et al. Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci Transl Med 2023; 15(706):eadg3358. doi:10.1126/scitranslmed. adg3358, PMID:37494474.

[115]

Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell 2020; 180(1):188-204.e22. doi:10.1016/j.cell.2019.11.036, PMID:31883794.

[116]

Granat LM, Kambhampati O, Klosek S, Niedzwecki B, Parsa K, Zhang D. The promises and challenges of patient-derived tumor organoids in drug development and precision oncology. Animal Model Exp Med 2019; 2(3):150-161. doi:10.1002/ame2.12077, PMID:31773090.

[117]

Li H, Chen Z, Chen N, Fan Y, Xu Y, Xu X. Applications of lung cancer organoids in precision medicine: from bench to bedside. Cell Commun Signal 2023; 21(1):350. doi:10.1186/s12964-023-01332-9, PMID:38057851.

[118]

Yousef Yengej FA, Jansen J, Rookmaaker MB, Verhaar MC, Clevers H. Kidney Organoids and Tubuloids. Cells 2020; 9(6):1326. doi:10.3390/ cells9061326, PMID:32466429.

[119]

Bartfeld S, Clevers H. Stem cell-derived organoids and their application for medical research and patient treatment. J Mol Med (Berl) 2017; 95(7):729-738. doi:10.1007/s00109-017-1531-7, PMID:2839 1362.

[120]

Berkers G, van Mourik P, Vonk AM, Kruisselbrink E, Dekkers JF, de Winter-de Groot KM, et al. Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis. Cell Rep 2019; 26(7):1701-1708.e3. doi:10.1016/j.celrep.2019.01.068, PMID:30759382.

[121]

Liu W, Mei X, Chen Y, Xiang Z, Gao Z, Xing L. Progress in 3D Organoid Models and Application Perspectives in Toxicity Test of Chemicals. Asian J Ecotoxicol 2021; 16(4):32-42. doi:10.7524/AJE.1673-5897.20200817001.

[122]

Leite SB, Roosens T, El Taghdouini A, Mannaerts I, Smout AJ, Najimi M, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 2016; 78:1-10. doi:10.1016/j.biomaterials.2015.11.026, PMID:26618472.

[123]

Li X, Zheng M, Xu B, Li D, Shen Y, Nie Y, et al. Generation of offspringproducing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials 2021;279:121213. doi:10.1016/j.biomaterials.2021.121213, PMID:34715637.

[124]

Susa K, Kobayashi K, Galichon P, Matsumoto T, Tamura A, Hiratsuka K, et al. ATP/ADP biosensor organoids for drug nephrotoxicity assessment. Front Cell Dev Biol 2023;11:1138504. doi:10.3389/ fcell.2023.1138504, PMID:36936695.

[125]

Wang Z, Xing C, van der Laan LJW, Verstegen MMA, Spee B, Masereeuw R. Cholangiocyte organoids to study drug-induced injury. Stem Cell Res Ther 2024; 15(1):78. doi:10.1186/s13287-024-03692-6, PMID:38475870.

[126]

Chen S, Abdulla A, Yan H, Mi Q, Ding X, He J, et al. Proteome signatures of joint toxicity to arsenic (As) and lead (Pb) in human brain organoids with optic vesicles. Environ Res 2024;243:117875. doi:10.1016/j.envres.2023.117875, PMID:38072110.

[127]

Kim JW, Nam SA, Seo E, Lee JY, Kim D, Ju JH, et al. Human kidney organoids model the tacrolimus nephrotoxicity and elucidate the role of autophagy. Korean J Intern Med 2021; 36(6):1420-1436. doi:10.3904/kjim.2020.323, PMID:32972120.

[128]

Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, et al. Longterm expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 2017; 14(11):1097-1106. doi:10.1038/ nmeth.4448, PMID:28967890.

[129]

Han X, Shen PL, Ma MY, Jia YY. Organoids and Organ-on-Chips: Cutting- Edge Strategies Chinese Medicine. J Nanjing Univ Tradit Chin Med 2025; 41(7):847-855. doi:10.14148/j.issn.1672-0482.2025.0847.

[130]

Chen Z. Pien Tze Huang (PZH) as a Multifunction Medicinal Agent in Traditional Chinese Medicine (TCM): a review on cellular, molecular and physiological mechanisms. Cancer Cell Int 2021; 21(1):146. doi:10.1186/s12935-021-01785-3, PMID:33658028.

[131]

Huang L, Zhang Y, Zhang X, Chen X, Wang Y, Lu J, et al. Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application. Molecules 2019; 24(18):3274. doi:10.3390/molecules24183274, PMID:31505740.

[132]

Gou H, Su H, Liu D, Wong CC, Shang H, Fang Y, et al. Traditional Medicine Pien Tze Huang Suppresses Colorectal Tumorigenesis Through Restoring Gut Microbiota and Metabolites. Gastroenterology 2023; 165(6):1404-1419. doi:10.1053/j.gastro.2023.08.052, PMID:37704113.

[133]

Jia D, Liu C, Zhu Z, Cao Y, Wen W, Hong Z, et al. Novel transketolase inhibitor oroxylin A suppresses the non-oxidative pentose phosphate pathway and hepatocellular carcinoma tumour growth in mice and patient-derived organoids. Clin Transl Med 2022; 12(11):e1095. doi:10.1002/ctm2.1095, PMID:36314067.

[134]

Huang R, Su LL, Ji D, Yin FZ, Lu TL, Shao Y, et al. Panorama of Organoid Technologies in Chinese Medicine: Opportunities and Challenges from Basie Mechanisms to Clinical Practice. J Nanjing Univ Tradit Chin Med 2025; 41(7):865-868. doi:10.14148/j.issn.1672-0482.2025.0856.

[135]

Zhang S, Liu F, Li J, Jing C, Lu J, Chen X, et al. A 4.7-kDa polysaccharide from Panax ginseng suppresses Aβ pathology via mitophagy activation in cross-species Alzheimer’s disease models. Biomed Pharmacother 2023;167:115442. doi:10.1016/j.biopha.2023.115442, PMID:37699318.

[136]

Kim S, Lee SI, Kim N, Joo M, Lee KH, Lee MW, et al. Decursin inhibits cell growth and autophagic flux in gastric cancer via suppression of cathepsin C. Am J Cancer Res 2021; 11(4):1304-1320. PMID:33948359.

[137]

Yuan M, Gao JP, Wang XB, Xu HX. Research Progress in Toxicology of Chinese Medicines. Asia Pac Tradit Med 2024; 20(1):225-232.

[138]

Gu S, Wu G, Lu D, Wang Y, Tang L, Zhang W. Human kidney organoids model of Esculentoside A nephrotoxicity to investigate the role of epithelial-mesenchymal transition via STING signaling. Toxicol Lett 2023; 373:172-183. doi:10.1016/j.toxlet.2022.11.019, PMID:36460195.

[139]

Chen H, Wen Y, Yu Z, Du X, Pan W, Liu T. Codonopsis pilosula polysaccharide alleviates rotenone-induced murine brain organoids death through downregulation of gene body DNA methylation modification in the ZIC4/PGM5/CAMTA1 axis. Biochem Biophys Rep 2024;37:101593. doi:10.1016/j.bbrep.2023.101593, PMID:38074999.

[140]

Yang J, Jiang Y, Li M, Wu K, Wei S, Zhao Y, et al. Organoid, organ-ona- chip and traditional Chinese medicine. Chin Med 2025; 20(1):22. doi:10.1186/s13020-025-01071-8, PMID:39940016.

[141]

Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering Approaches for the Advanced Organoid Research. Adv Mater 2021; 33(45):e2007949. doi:10.1002/adma.202007949, PMID:345 61899.

[142]

Goldsmith TM, Sakib S, Webster D, Carlson DF, Van der Hoorn F, Dobrinski I. A reduction of primary cilia but not hedgehog signaling disrupts morphogenesis in testicular organoids. Cell Tissue Res 2020; 380(1):191-200. doi:10.1007/s00441-019-03121-8, PMID:31900662.

[143]

Smits LM, Reinhardt L, Reinhardt P, Glatza M, Monzel AS, Stanslowsky N, et al. Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinsons Dis 2019; 5:5. doi:10.1038/s41531-019- 0078-4, PMID:30963107.

[144]

Tan W, Chen J, Wang Y, Xiang K, Lu X, Han Q, et al. Single-cell RNA sequencing in diabetic kidney disease: a literature review. Ren Fail 2024; 46(2):2387428. doi:10.1080/0886022X.2024.2387428, PMID: 39099183.

[145]

Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, et al. The Evolution of Single-Cell RNA Sequencing Technology and Application: Pro gress and Perspectives. Int J Mol Sci 2023; 24(3):2943. doi:10.3390/ ijms24032943, PMID:36769267.

[146]

Zhao Y, Li ZX, Zhu YJ, Fu J, Zhao XF, Zhang YN, et al. Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids. Adv Sci (Weinh) 2021; 8(11):e2003897. doi:10.1002/ advs.202003897, PMID:34105295.

[147]

Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med 2022; 12(3):e694. doi:10.1002/ctm2.694, PMID:35352511.

[148]

Salaris F, Colosi C, Brighi C, Soloperto A, Turris V, Benedetti MC, et al. 3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells. J Clin Med 2019; 8(10):1595. doi:10.3390/jcm8101595, PMID:31581732.

[149]

Juraski AC, Sharma S, Sparanese S, da Silva VA, Wong J, Laksman Z, et al. 3D bioprinting for organ and organoid models and disease modeling. Expert Opin Drug Discov 2023; 18(9):1043-1059. doi:10.1 080/17460441.2023.2234280, PMID:37431937.

[150]

Kong JS, Huang X, Choi YJ, Yi HG, Kang J, Kim S, et al. Promoting Long-Term Cultivation of Motor Neurons for 3D Neuromuscular Junction Formation of 3D In Vitro Using Central-Nervous-Tissue-Derived Bioink. Adv Healthc Mater 2021; 10(18):e2100581. doi:10.1002/ adhm.202100581, PMID:34363335.

[151]

Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism 2017;69S:S36-S40. doi:10.1016/j.metabol.2017.01.011, PMID:28126242.

[152]

Shi H, Kowalczewski A, Vu D, Liu X, Salekin A, Yang H, et al. Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models. Med Nov Technol Devices 2024;21:100276. doi:10.1016/j.medntd.2023.100276, PMID:38646471.

[153]

Sun Y, Huang F, Zhang H, Jiang H, Luo G. [ A review on depth perception techniques in organoid images]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2024; 41(5):1053-1061. doi:10.7507/1001- 5515.202404036, PMID:39462675.

[154]

Chen H, Yu L, Dou Q, Shi L, Mok VCT, Heng PA. Automatic detection of cerebral microbleeds via deep learning based 3D feature representation. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). Brooklyn, NY, USA; 2015:764-767. doi:10.1109/ ISBI.2015.7163984.

[155]

Wu H, Wang H, Wang L, Luo X, Zou D. Application progress and challenges of artificial intelligence in organoid research. China Oncology 2024; 34(2):210-219. doi:10.19401/j.cnki.1007-3639.2024.02.009.

[156]

He C, Kalafut NC, Sandoval SO, Risgaard R, Sirois CL, Yang C, et al. BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids. Cell Rep Methods 2023; 3(2):100409. doi:10.1016/j.crmeth.2023.100409, PMID:36936 070.

[157]

Prince E, Cruickshank J, Ba-Alawi W, Hodgson K, Haight J, Tobin C, et al. Biomimetic hydrogel supports initiation and growth of patientderived breast tumor organoids. Nat Commun 2022; 13(1):1466. doi:10.1038/s41467-022-28788-6, PMID:35304464.

[158]

Zhu M, Song C, Du Y, Long M. Fibrotic microenvironment regulates chronic liver injury repair based on liver organoid microarray studie. Journal of Medical Biomechanics 2024; 39(S1):675.

[159]

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5):313-323. doi:10.1038/nri2515, PMID:19343057.

[160]

Yoon YJ, Kim D, Tak KY, Hwang S, Kim J, Sim NS, et al. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat Commun 2022; 13(1):3291. doi:10.1038/s41467-022-30934-z, PMID:35672412.

[161]

Chen J, Hong C, Wang X. Research progress and challenges in the application of gastrointestinal cancer organoids. J Dig Oncol (Electronic Version) 2021; 13(4):294-297.

[162]

Li Y, Liao W, Sun L. Application of tumor organoids simulating the tumor microenvironment in basic and clinical research of tumor immunotherapy. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024; 49(8):1316-1326. doi:10.11817/j.issn.1672-7347.2024.240187, PMID:39788520.

[163]

Yang R, Yu Y. Patient-derived organoids in translational oncology and drug screening. Cancer Lett 2023;562:216180. doi:10.1016/j. canlet.2023.216180, PMID:37061121.

[164]

Xu R, Zhou X, Wang S, Trinkle C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther 2021;218:107668. doi:10.1016/j.pharmthera.2020.107668, PMID:32853629.

[165]

Romero-López M, Trinh AL, Sobrino A, Hatch MM, Keating MT, Fimbres C, et al. Recapitulating the human tumor microenvironment: Colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 2017; 116:118-129. doi:10.1016/j. biomaterials.2016.11.034, PMID:27914984.

[166]

Lan L, Huang H. Progress in organoid research and ethical consideration. Biology Teaching 2023; 48(9):4-7. doi:10.3969/j.issn.1004-7549.2023.09.002.

[167]

Zhou Z, Cong L, Cong X. Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank. Front Oncol 2021;11:762184. doi:10.3389/ fonc.2021.762184, PMID:35036354.

[168]

Chen Q, Zhao S, Peng Y. Organoids: technological innovation and ethical controversies. Synthetic Biology Journal 2024; 5(4):898-907. doi:10.12211/2096-8280.2024-009.

[169]

Yang H, Cheng J, Zhuang H, Xu H, Wang Y, Zhang T, et al. Pharmacogenomic profiling of intra-tumor heterogeneity using a large organoid biobank of liver cancer. Cancer Cell 2024; 42(4):535-551.e8. doi:10.1016/j.ccell.2024.03.004, PMID:38593780.

[170]

Farin HF, Mosa MH, Ndreshkjana B, Grebbin BM, Ritter B, Menche C, et al. Colorectal Cancer Organoid-Stroma Biobank Allows Subtype- Specific Assessment of Individualized Therapy Responses. Cancer Discov 2023; 13(10):2192-2211. doi:10.1158/2159-8290.CD-23-0050, PMID:37489084.

AI Summary AI Mindmap
PDF

474

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/