Unravelling Antileishmanial Mechanisms of Phytochemicals: From Mitochondrial Disruption to Immunomodulation

Sanjib Bhattacharya

›› 2025, Vol. 4 ›› Issue (2) : 135 -140.

PDF
›› 2025, Vol. 4 ›› Issue (2) : 135 -140. DOI: 10.14218/FIM.2025.00021
Mini Review
research-article

Unravelling Antileishmanial Mechanisms of Phytochemicals: From Mitochondrial Disruption to Immunomodulation

Author information +
History +
PDF

Abstract

Leishmaniasis is a dangerous yet neglected tropical disease affecting a vast population of the world. Several medicinal plants and their constituents (natural products/phytochemicals) have been considered of prime importance for the management of leishmaniasis over the years. The present review sheds light on the molecular mechanisms of the constituents obtained from medicinal plants that are pre-clinically effective against leishmaniasis. Various mechanisms by which medicinal plant-derived natural products elicit their action against leishmaniasis are illustrated in the literature. The mechanisms identified include: disruption of cytoplasmic and mitochondrial membranes, induction of apoptosis and autophagy, modulation of gene expression and immunological pathways, pro-oxidant effects (disrupting redox balance) with mitochondrial dysfunction, cell cycle arrest, impaired cellular bioenergetics, i.e., adenosine triphosphate production and coagulation of cellular contents within Leishmania parasites. Future phytochemical and pharmacological (especially clinical) studies are necessary to further understand the mechanistic details of medicinal plant-derived natural compounds and to develop new phytotherapeutic entities from nature against leishmaniasis.

Keywords

Leishmaniasis / Mitochondria / Natural products / Antileishmanial / Pro-oxidant / Tropical / Phytochemicals

Cite this article

Download citation ▾
Sanjib Bhattacharya. Unravelling Antileishmanial Mechanisms of Phytochemicals: From Mitochondrial Disruption to Immunomodulation. , 2025, 4(2): 135-140 DOI:10.14218/FIM.2025.00021

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hassan AA, Khalid HE, Abdalla AH, Mukhtar MM, Osman WJ, Efferth T. Antileishmanial Activities of Medicinal Herbs and Phytochemicals In Vitro and In Vivo: An Update for the Years 2015 to 2021. Molecules 2022; 27(21):7579. doi:10.3390/molecules27217579, PMID: 36364404.

[2]

eBioMedicine. Leishmania: an urgent need for new treatments. EBioMedicine 2023;87:104440. doi:10.1016/j.ebiom.2023.104440, PMID:36653110.

[3]

Bhattacharya S, Biswas M, Haldar PK. The triterpenoid fraction from Trichosanthes dioica root exhibits in vitro antileishmanial effect against Leishmania donovani promastigotes. Pharmacognosy Res 2013; 5(2):109-112. doi:10.4103/0974-8490.110540, PMID:237 98885.

[4]

Pradhan S, Schwartz RA, Patil A, Grabbe S, Goldust M. Treatment options for leishmaniasis. Clin Exp Dermatol 2022; 47(3):516-521. doi:10.1111/ced.14919, PMID:34480806.

[5]

Gervazoni LFO, Barcellos GB, Ferreira-Paes T, Almeida-Amaral EE. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front Chem 2020;8:579891. doi:10.3389/fchem.2020.579891, PMID:33330368.

[6]

Colares AV, Almeida-Souza F, Taniwaki NN, Souza Cda S, da Costa JG, Calabrese Kda S, et al. In Vitro Antileishmanial Activity of Essential Oil of Vanillosmopsis arborea (Asteraceae) Baker. Evid Based Complement Alternat Med 2013; 2013:727042. doi:10.1155/2013/727042, PMID:23935675.

[7]

Machado M, Dinis AM, Santos-Rosa M, Alves V, Salgueiro L, Cavaleiro C, et al. Activity of Thymus capitellatus volatile extract, 1,8-cineole and borneol against Leishmania species. Vet Parasitol 2014; 200(1- 2):39-49. doi:10.1016/j.vetpar.2013.11.016, PMID:24365244.

[8]

Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, et al. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol 2007;56(Pt 9):1213-1218. doi:10.1099/jmm.0.47364-0, PMID:17761485.

[9]

Sen R, Ganguly S, Saha P, Chatterjee M. Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 2010; 36(1):43-49. doi:10.1016/j.ijantimicag.2010.03.008, PMID:20403680.

[10]

De Sarkar S, Sarkar D, Sarkar A, Dighal A, Chakrabarti S, Staniek K, et al. The leishmanicidal activity of artemisinin is mediated by cleavage of the endoperoxide bridge and mitochondrial dysfunction. Parasitology 2019; 146(4):511-520. doi:10.1017/S003118201800183X, PMID:303 92476.

[11]

Yamamoto ES, Campos BL, Jesus JA, Laurenti MD, Ribeiro SP, Kallás EG, et al. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis. PLoS One 2015; 10(12):e0144946. doi:10.1371/journal.pone.0144946, PMID:26674781.

[12]

Corpas-López V, Merino-Espinosa G, Díaz-Sáez V, Morillas- Márquez F, Navarro-Moll MC, Martín-Sánchez J. The sesquiterpene (-)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis. Apoptosis 2016; 21(10):1071-1081. doi:10.1007/ s10495-016-1282-x, PMID:27539477.

[13]

Hajaji S, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Jiménez IA, Bazzocchi IL, et al. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol Res 2018; 117(9):2855-2867. doi:10.1007/s00436-018-5975-7, PMID:29955971.

[14]

Bhattacharya S. Plant-derived natural compounds in the treatment of arsenic-induced toxicity. Asian Pacific J Trop Biomed 2023; 13(9):369-377. doi:10.4103/2221-1691.385567.

[15]

Bhattacharya S. Antineoplastic potential of Trichosanthes dioica root: A treatise. Indian J Nat Prod Resour 2023; 14(2):202-209. doi:10.56042/ijnpr.v14i2.1161.

[16]

Bhattacharya S. Vitamin C in cancer management:clinical evidence and involvement of redox role. In: ChakrabortiS, RayBK, Roychowdhury S (eds). Handbook of Oxidative Stress and Cancer:Mechanistic Aspects. 1st ed. Singapore: Springer; 2022:2421-2433. doi:10.1007/978-981-15-9411-3_161.

[17]

Inacio JDF, Fonseca MS, Almeida-Amaral EE. -)-Epigallocatechin 3-O-Gallate as a New Approach for the Treatment of Visceral Leishmaniasis. J Nat Prod 2019; 82(9):2664-2667. doi:10.1021/acs.jnatprod.9b00632, PMID:31503486.

[18]

Fonseca-Silva F, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida- Amaral EE. Effect of Apigenin on Leishmania amazonensis Is Associated with Reactive Oxygen Species Production Followed by Mitochondrial Dysfunction. J Nat Prod 2015; 78(4):880-884. doi:10.1021/acs.jnatprod.5b00011, PMID:25768915.

[19]

Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida-Amaral EE. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action. PLoSNegl Trop Dis 2016; 10(2):e0004442. doi:10.1371/journal.pntd.0004442, PMID:26862901.

[20]

Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 2011; 6(2):e14666. doi:10.1371/journal.pone.0014666, PMID:21346801.

[21]

Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J Nat Prod 2013; 76(8):1505-1508. doi:10.1021/np400193m, PMID:23876028.

[22]

De Sarkar S, Sarkar D, Sarkar A, Dighal A, Staniek K, Gille L, et al. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol Res 2019; 118(1):335-345. doi:10.1007/s00436-018-6157-3, PMID:30470927.

[23]

Sharma N, Shukla AK, Das M, Dubey VK. Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol Res 2012; 110(1):341-348. doi:10.1007/s00436-011-2498-x, PMID:21717278.

[24]

Brenzan MA, Santos AO, Nakamura CV, Filho BP, Ueda-Nakamura T, Young MC, et al. Effects of (-) mammea A/BB isolated from Calophyllumbrasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine 2012; 19(3-4):223-230. doi:10.1016/j.phymed.2011.10.008, PMID:22285848.

[25]

Di Giorgio C, Delmas F, Akhmedjanova V, Ollivier E, Bessonova I, Riad E, et al. In vitro antileishmanial activity of diphyllin isolated from Haplophyllumbucharicum. Planta Med 2005; 71(4):366-369. doi:10.105 5/s-2005-864106, PMID:15856417.

[26]

Brito JR, Passero LFD, Bezerra-Souza A, Laurenti MD, Romoff P, Barbosa H, et al. Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from Saururus cernuus L. (Saururaceae). J Pharm Pharmacol 2019; 71(12):1871-1878. doi:10.1111/jphp.13171, PMID:31595517.

[27]

Chowdhury S, Mukherjee T, Mukhopadhyay R, Mukherjee B, Sengupta S, Chattopadhyay S, et al. The lignan niranthin poisons Leishmania donovani topoisomerase IB and favours a Th 1 immune response in mice. EMBO Mol Med 2012; 4(10):1126-1143. doi:10.1002/ emmm.201201316, PMID:23027614.

[28]

de Castro Oliveira LG, Brito LM, de Moraes Alves MM, Amorim LV, Sobrinho- Júnior EP, de Carvalho CE, et al. In Vitro Effects of the Neolignan 2,3-Dihydrobenzofuran Against Leishmania Amazonensis. Basic Clin PharmacolToxicol 2017; 120(1):52-58. doi:10.1111/bcpt.12639, PMID:27398818.

[29]

Bortoleti BTDS, Tomiotto-Pellissier F, Gonçalves MD, Miranda-Sapla MM, Assolini JP, Carloto AC, et al. Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability. Phytomedicine 2019; 57:262-270. doi:10.1016/j.phymed.2018.12.035, PMID:30802712.

[30]

Garcia AR, Oliveira DMP, Claudia F Amaral A, Jesus JB, RennóSodero AC, Souza AMT, et al. Leishmania infantum arginase: biochemical characterization and inhibition by naturally occurring phenolic substances. J Enzyme Inhib Med Chem 2019; 34(1):1100-1109. doi:10.1 080/14756366.2019.1616182, PMID:31124384.

[31]

Pereira IAG, Mendonça DVC, Tavares GSV, Lage DP, Ramos FF, Oliveira- da-Silva JA, et al. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol 2020; 42(12):e12784. doi:10.1111/pim.12784, PMID:32772379.

[32]

Lezama-Dávila CM, McChesney JD, Bastos JK, Miranda MA, Tiossi RF, da Costa Jde C, et al. A New Antileishmanial Preparation of Combined Solamargine and Solasonine Heals Cutaneous Leishmaniasis through Different Immunochemical Pathways. Antimicrob Agents Chemother 2016; 60(5):2732-2738. doi:10.1128/AAC.02804-15, PMID:26883711.

[33]

Troncoso ME, Germanó MJ, Arrieta VJ, García Bustos MF, Cifuente D, Cargnelutti DE, et al. Antiparasitic Activity of Two Natural Terpenes from Salvia cuspidata against Leishmania amazonensis. J Nat Prod 2023; 86(4):797-803. doi:10.1021/acs.jnatprod.2c00976, PMID:36857574.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/