Review of stochastic optimization methods for smart grid

S. Surender REDDY , Vuddanti SANDEEP , Chan-Mook JUNG

Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 197 -209.

PDF (233KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 197 -209. DOI: 10.1007/s11708-017-0457-7
REVIEW ARTICLE
REVIEW ARTICLE

Review of stochastic optimization methods for smart grid

Author information +
History +
PDF (233KB)

Abstract

This paper presents various approaches used by researchers for handling the uncertainties involved in renewable energy sources, load demands, etc. It gives an idea about stochastic programming (SP) and discusses the formulations given by different researchers for objective functions such as cost, loss, generation expansion, and voltage/V control with various conventional and advanced methods. Besides, it gives a brief idea about SP and its applications and discusses different variants of SP such as recourse model, chance constrained programming, sample average approximation, and risk aversion. Moreover, it includes the application of these variants in various power systems. Furthermore, it also includes the general mathematical form of expression for these variants and discusses the mathematical description of the problem and modeling of the system. This review of different optimization techniques will be helpful for smart grid development including renewable energy resources (RERs).

Keywords

renewable energy sources / stochastic optimization / smart grid / uncertainty / optimal power flow (OPF)

Cite this article

Download citation ▾
S. Surender REDDY, Vuddanti SANDEEP, Chan-Mook JUNG. Review of stochastic optimization methods for smart grid. Front. Energy, 2017, 11(2): 197-209 DOI:10.1007/s11708-017-0457-7

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

World population is increasing drastically and these huge mass of human also has a great consumption of energy. Therefore, to meet this requirement of increasing demand, renewable energy can be used along with fossil fuel. Fossil fuels are not enough to meet the increasing demand for a long time and their use is not advisable in environmental terms. Renewable energy resources (RERs) are the only solution to global warming and higher cost of fossil fuels issues []. They produce almost no waste products such as carbon dioxide or any other harmful chemicals. Since renewable energies have some technical and economic challenges such as reliability, as their generation depends on the availability of different RERs such as wind and solar, they involve unpredictable and random behavior. This makes the whole power system unpredictable. In this paper, different OPF methods, i.e., linear, nonlinear and advanced technologies are evaluated and compared.

Reference [] formulates a stochastic problem for microgrid energy scheduling. It minimizes the expected operational cost of the microgrid and power losses while accommodating the intermittent nature of RERs. A hybrid stochastic/robust optimization model is proposed in Ref. [] to minimize the expected net cost, i.e., expected total cost of operation minus total benefit of demand. This formulation can be solved by mixed-integer linear programming. A probabilistic model for small scale energy resources and load demand which is used to determine the optimal scheduling of microgrids with minimum operating cost is presented in Ref. []. In Ref. [], the key features of microgrids and a comprehensive literature survey on the stochastic modeling and optimization tools for a microgrid are presented. Reference [] proposes a stochastic model for optimal energy management with the goal of cost and emission minimization. In this model, the uncertainties related to the forecasted values for load demand, available output power of wind and photovoltaic units and market price are modeled by scenario-based SP. Reference [] formulates a two-stage SP, where the first-stage is associated with the electricity market and its rules and constraints, and the second-stage is related to the actual operation of the power system and its physical limitations in each scenario. In Ref. [], a novel stochastic probabilistic energy and a reserve market clearing scheme are proposed in the presence of plug-in vehicles (PEV) and wind power introducing a new model for PEV aggregators. In Ref. [], the problem of modeling and stochastic optimization for home energy management is considered.

Reference [] proposes a probabilistic model using the point estimate method to reduce the probability of congestions and voltage violations in a smart grid located in a radial distribution system. A detailed review of literature using agent based modeling and simulation techniques for analyzing smart grids from the perspective of the system is presented in Ref. []. A comprehensive review on mathematical modeling methods of photovoltaic (PV) solar cell/module/array which can be used for power system dynamic modeling purpose is given in Ref. []. Reference [] proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. A stochastic framework based on the cloud theory to handle the uncertainty effects in the optimal operation of microgrids is proposed in Ref. []. A review of various mathematical models proposed by different researchers is conducted in Ref. []. These models are developed based on objective functions, economics and reliability studies involving design parameters. Reference. [] proposes a unit commitment formulation for the microgrid using the two stage scenario based SP method. The day-ahead scenarios and hour-ahead scenarios providing the information about the location of electric vehicles, and the historical data are presented in Ref. []. In Ref. [], a co-optimization based OPF solver is developed to solve over contingencies and renewable uncertainties. A stochastic model with high number of scenarios and the modeling of different strategies of EV integration are proposed in Ref. []. Reference [] proposes the effects of uncertain renewable energy and loads on optimizing profit and cost in a microgrid power market. A cloud computing framework in a smart grid environment by creating small integrated energy hub supporting real time computing for handling huge storage of data is proposed in Ref. [].

Evaluation of stochastic optimization methods for smart grid

Recourse method

CCP

Monte Carlo simulation (MCS) / sample average approximation (SAA)

Risk averse optimization

Comparison of SP techniques

Probabilistic OPF (P-OPF)

OPF problems involve different power system objectives such as cost minimization, environmental dispatch, maximum power transfer, reactive power objectives—minimization of MW and MVA losses, general objectives—minimum deviation from a target schedule, minimum control shifts, least absolute shift approximation of control shift, and constraints such as limits on control variables—generator output in MW, transformer tap limits, shunt capacitor limits, operating limits on line and transformer flows—MVA, amps, MW and MVA, MW and MVA reserve margins, voltage and angle, control parameters—control effectiveness, limit priorities through engineering rules and operating limit enforcement, voltage stability limits, local and non optimized controls—generator voltage, general real power, transformer output voltage, MVA and shunt/SVC controls, equipment ganging and sharing—tap changing, generator MVA sharing, and control ordering []. It is a mathematical form of any power system problem, and the optimal solution leads to the ideal operation of the power system. For any typical OPF problem, first, all inputs need to be modeled so that it can fit to the mathematical form. According to the desired form of output, objective functions and constraints should be defined. The problem formulated can either be solved by using classical methods such as linear programming, nonlinear programming, quadratic programming, integer programming, dynamic programming or any of the advanced methods of optimization such as adaptive dynamic programming, evolutionary programming, artificial intelligence methods and heuristic programming, etc. Table 3 is generated for comparison of the above methods for different objective functions. It gives the guidelines for selecting a method for a given optimization problem and its relative application.

Conclusions

References

[1]

Pimentel DHerz  MGlickstein M Zimmerman M Allen R Becker K Evans J Hussain B Sarsfeld R Grosfeld A Seidel T . Renewable energy: current and potential issues. Bioscience, 2002, 52(12): 1111–1120

[2]

Ochoa L FHarrison  G P. Minimizing energy losses: optimal accommodation and smart operation of renewable distributed generation. IEEE Transactions on Power Systems201126(1): 198–205

[3]

Pepermans GDriesen  JHaeseldonckx D D’haeseleer W Belmans R . Distributed generation: definition, benefits and issues. Energy Policy, 2005, 33(6): 787–798

[4]

Rasmussen C N . Energy storage for improvement of wind power characteristics. IEEE TrondheimPowertech, 2011: 1–8

[5]

Jabr R APal  B C. Intermittent wind generation in optimal power flow dispatching. IET Generation, Transmission & Distribution20093(1): 66–74

[6]

PSERC Executive Committee. “Challenges in integrating renewable technologies into an electric power system” white paper, April 2010

[7]

Amarnath R VRamana  N V. State of art in optimal power flow solution methodologies. Journal of Theoretical and Applied Information Technology201130(2): 128–154

[8]

Selvi VUmarani  R. Comparative analysis of ant colony and particle swarm optimization techniques. International Journal of Computers and Applications20105(4): 1–6

[9]

AlRashidi M R El-Hawary M E . A survey of particle swarm optimization applications in electric power systems. IEEE Transactions on Evolutionary Computation200913(4): 913–918

[10]

Momoh J AAdapa  REl-Hawary M E . A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems199914(1): 96–104

[11]

Monticelli APereira  M V FGranville  S. Security constrained optimal power flow with post-contingency corrective rescheduling. IEEE Transaction on Power System1987pwrs-2:1(1): 175–180

[12]

Stott BAlsac  OMonticelli A . Security analysis and optimization. Proceedings of the IEEE198775(12): 1623–1644

[13]

Birge J RLouveaux  F. Introduction to Stochastic Programming.New York: Springer-Verlag, 1997

[14]

Allan R NDa Silva  A M LBurchett  R C. Evaluation methods and accuracy in probabilistic load flow solutions. IEEE Transactions on Power Apparatus & Systems, 1981PAS-100(5): 2539–2546

[15]

Chandy K MLow  S HTopcu  UXu H . A simple optimal power flow model with energy storage. 49th IEEE Conference on Decision and Control, 201158(8) 1051–1057

[16]

Yau TWalker  LGraham H Gupta A . Effects of battery storage devices on power system dispatch. IEEE Transactions on Power Apparatus & Systems, 1981PAS-100(1): 375–383

[17]

Su WWang  JRoh J . Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Transactions on Smart Grid, 2013, 5(4): 1876–1883

[18]

Liu GXu  YTomsovic K . Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization. IEEE Transactions on Smart Grid, 20167(1): 227–237

[19]

Nikmehr NNajafi-Ravadanegh  S. Probabilistic optimal power dispatch in multi-microgrids using heuristic algorithms. In: Smart Grid Conference, Tehran2014: 1–6

[20]

Liang HZhuang  W. Stochastic modeling and optimization in a microgrid: a survey. Energies, 20147(4): 2027–2050

[21]

Niknam TAbarghooee  R ANarimani M R . An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Applied Energy, 2012, 99(6): 455–470

[22]

Falsafi HZakariazadeh  AJadid S . The role of demand response in single and multi-objective wind-thermal generation scheduling: a stochastic programming. Energy, 2014, 64(1): 853–867

[23]

Khazali AKalantar  M. A stochastic–probabilistic energy and reserve market clearing scheme for smart power systems with plug-in electrical vehicles. Energy Conversion and Management, 2015,105: 1046–1058

[24]

Yu ZJia  LMurphy-Hoye M C Pratt A Tong L. Modeling and stochastic control for home energy management. IEEE Transactions on Smart Grid, 20124(4): 2244–2255

[25]

Romero-Ruiz  Pérez-Ruiz  Martin  AguadoJ A De la Torre  S . Probabilistic congestion management using EVs in a smart grid with intermittent renewable generation. Electric Power Systems Research2016137: 155–162

[26]

Ringler PKeles  DFichtner W . Agent-based modelling and simulation of smart electricity grids and markets: a literature review. Renewable & Sustainable Energy Reviews, 201657: 205–215

[27]

Koohi-KamaliSRahim N AMokhlisH TyagiV V . Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review. Renewable & Sustainable Energy Reviews, 201657(C): 131–172

[28]

Soroudi A. Robust optimization based self scheduling of hydro-thermal Genco in smart grids. Energy, 2013, 61(6): 262–271

[29]

ParhoudehSBaziar A, MazareieA Kavousi-FardA . A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids. International Journal of Electrical Power & Energy2016, 80: 73–80

[30]

SiddaiahRSaini R P. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable & Sustainable Energy Reviews, 2016, 58: 376–396

[31]

MohammadiSMohammadi  A. Stochastic scenario-based model and investigating size of battery energy storage and thermal energy storage for micro-grid. International Journal of Electrical Power & Energy System, 2014, 61: 531–546

[32]

Soares JVale  Z. Stochastic optimization of distributed energy resources in smart grids. 2015

[33]

Chiang H D. Stochastic security-constrained AC optimal power flow solver for large power networks with renewable. 2015

[34]

Miranda V. Electric vehicles in smart grids: a hybrid Benders/EPSO solver for stochastic reservoir optimization. 2015

[35]

MohanVSingh J GOngsakulW UnniA C Sasidharan N . Stochastic effects of renewable energy and loads on optimizing microgrid market benefits. Procedia Technology, 201521: 15–23

[36]

RekaS SRamesh  V. Demand side management scheme in smart grid with cloud computing approach using stochastic dynamic programming. Perspectives in Science, 2016

[37]

Sobu AWu  G. Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand. In: 2012 IEEE PES Innovative Smart Grid Technologies-Asia, Tianjin2012: 1–6

[38]

Küster TLützenberger  MVoß M Freund D Albayrak S . Applying heuristics and stochastic optimization for load-responsive charging in a smart grid architecture. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe, Istanbul2014: 1–6

[39]

Zhu ZLambotharan  SChin W H Fan Z. A stochastic optimization approach to aggregated electric vehicles charging in smart grids. In: 2014 IEEE Innovative Smart Grid Technologies-Asia, Kuala Lumpur2014: 51–56

[40]

Tan JWang  L. A stochastic model for quantifying the impact of PHEVs on a residential distribution grid. In: IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Nanjing2013: 120–125

[41]

Haghi H VQu  ZLotfifard S . Analytics-based optimization for smart grid operations. In: IEEE International Workshop on Intelligent Energy Systems, San Diego2014: 58–63

[42]

Venayagamoorthy G K . Dynamic, stochastic, computational, and scalable technologies for smart grids. IEEE Computational Intelligence Magazine, 2011, 6(3): 22–35

[43]

Gong CWang  XXu W Tajer A . Distributed real-time energy scheduling in smart grid: stochastic model and fast optimization. IEEE Transactions on Smart Grid20134(3): 1476–1489

[44]

Momoh J A. Adaptive Stochastic Optimization Techniques with Applications. Boca Raton :CRC Press, 2015

[45]

Alguacil NConejo  A J. Multiperiod optimal power flow using benders decomposition. IEEE Transactions on Power Systems,  2000, 15(1): 196–201

[46]

Sortomme EEl-Sharkawi  M A. Optimal power flow for a system of microgrids with controllable loads and battery storage. Power Systems Conference & Exposition, 2009, 107(1): 1–5

[47]

Delson J KShahidehpour  S M. Linear programming applications to power system economics, planning and operations. IEEE Transactions on Power Systems, 1992, 7(3): 1155–1163

[48]

Hashemi-DezakiH, HamzehM Askarian-AbyanehH Haeri-Khiavi H . Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation. Energy Conversion and Management, 2015, 100: 262–276

[49]

ArnoldUYildiz  Ö. Economic risk analysis of decentralized renewable energy infrastructures–a Monte Carlo simulation approach. Renewable Energy, 201577: 227–239

[50]

PereiraE J SPinho J TGalhardoM A B Macêdo W N . Methodology of risk analysis by Monte Carlo method applied to power generation with renewable energy. Renewable Energy, 2014, 69(3): 347–355

[51]

Rosenblueth E. Point estimates for probability moments. Proceedings of the National Academy of Science of the United States of America, 1975, 72(10): 3812–3814

[52]

Rosenblueth E. Two-point estimates in probability. Applied Mathematical Modelling, 1981, 5(5): 329–335

[53]

Morales J MPérez-Ruiz  J. Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems, 2007, 22(4): 1594–1601

[54]

Verbic GCanizares  C A. Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems, 2006, 21(4): 1883–1893

[55]

Surender Reddy S Bijwe P R Abhyankar A R . Optimal posturing in day-ahead market clearing for uncertainties considering anticipated real-time adjustment costs. IEEE Systems Journal, 2015, 9(1): 177–190

[56]

Reddy S SMomoh  J A. Realistic and transparent optimum scheduling strategy for hybrid power system. IEEE Transactions on Smart Grid, 2015, 6(6): 1–1

[57]

Reddy S SBijwe  P RAbhyankar  A R. Joint energy and spinning reserve market clearing incorporating wind power and load forecast uncertainties. IEEE Systems Journal, 2015, 9(1): 152–164

[58]

Geidl MAndersson  G. A modeling and optimization approach for multiple energy carrier power flow. Power Technology, IEEE Russia, 2005, 38(16): 1–7

[59]

Momoh J ASurender Reddy  S. Review of optimization techniques for renewable energy resources.IEEE Symposium on Power Electronics and Machines for Wind and Water Applications, Milwaukee, WI, 2014

[60]

Momoh J AReddy  S SBaxi  Y. Stochastic Voltage/Var control with load variation. In: 2014 IEEEPES General Meeting | Conference & Exposition, National Harbor, MD (Washington, DC Metro Area)2014

[61]

Momoh J ABaxi  YIdubor A O . Frame work for real time optimal power flow using real time measurement tools and techniques. In : North American Power Symposium, Boston2011,1–7

[62]

Wei HSasaki  HKubokawa J Yokoyama R . An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Transactions on Power Systems Pwrs, 1998, 47(3): 14–18

[63]

Alguacil NConejo  A J. Multi period optimal power flow using benders decomposition. IEEE Transactions on Power Systems, 2000, 15(1): 196–201

[64]

Todorovski MRajiˇcic   D. An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Transactions on Power Systems, 2006, 21(2): 480–487

[65]

Torres GQuintana  V H. An interior point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems, 1998, 13(4): 1211–1218

[66]

Jabr R A. Optimal power flow using an extended conic quadratic formulation. IEEE Transactions on Power Systems Pwrs, 2008, 23(3): 1000–1008

[67]

Li YMcCalley  J D. Decomposed SCOPF for improving efficiency. IEEE Transactions on Power Systems Pwrs, 2009, 24(1): 494–495

[68]

Vovos P NHarrison  G PWallace  A RBialek  J W. Optimal power flow as a tool for fault level-constrained network capacity analysis. IEEE Transactions on Power Systems, 2005, 20(2): 734–741

[69]

Moon G HWi  Y MLee  KJoo S K . Fault current constrained decentralized optimal power flow incorporating superconducting fault current limiter (SFCL). IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2157–2160

[70]

Verbiˇc G. Cañizares   C A. Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems, 2006, 21(4): 1883–1893

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (233KB)

5460

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/