Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels

Yanfang SONG , Xiao DONG , Wei CHEN , Wei WEI

Front. Energy ›› 2022, Vol. 16 ›› Issue (5) : 700 -705.

PDF (2264KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (5) : 700 -705. DOI: 10.1007/s11708-022-0842-8
PERSPECTIVE
PERSPECTIVE

Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels

Author information +
History +
PDF (2264KB)

Graphical abstract

Cite this article

Download citation ▾
Yanfang SONG, Xiao DONG, Wei CHEN, Wei WEI. Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels. Front. Energy, 2022, 16(5): 700-705 DOI:10.1007/s11708-022-0842-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NationalEnergy Administration of China. The development of renewable energy reached a new level in 2021. 2022–01–28, available at National Energy Administration website

[2]

NationalEnergy Administration of China. New energy consumption capacity. 2022–06–10, available at National Energy Administration website

[3]

Won D H, Shin H, Koh J. . Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angewandte Chemie International Edition, 2016, 55(32): 9297–9300

[4]

Ma M, Trzesniewski B J, Xie J. . Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angewandte Chemie International Edition, 2016, 55(33): 9748–9752

[5]

Liu M, Pang Y, Zhang B. . Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537(7620): 382–386

[6]

Gao S, Jiao X, Sun Z. . Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angewandte Chemie International Edition, 2016, 55(2): 698–702

[7]

Wang Y, Zhou J, Lv W. . Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Applied Surface Science, 2016, 362: 394–398

[8]

Zheng X, De Luna P, García de Arquer F P. . Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule, 2017, 1(4): 794–805

[9]

Ross M B, De Luna P, Li Y. . Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2(8): 648–658

[10]

Zhao C, Wang J. Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chemical Engineering Journal, 2016, 293: 161–170

[11]

Ma M, Liu K, Shen J. . In situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion. ACS Energy Letters, 2018, 3(6): 1301–1306

[12]

Zhao C, Dai X, Yao T. . Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. Journal of the American Chemical Society, 2017, 139(24): 8078–8081

[13]

Choi J, Kim J, Wagner P. . Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy & Environmental Science, 2019, 12(2): 747–755

[14]

Lv J J, Jouny M, Luc W. . A highly porous copper electrocatalyst for carbon dioxide reduction. Advanced Materials, 2018, 30(49): 1803111

[15]

Dinh C T, Burdyny T, Kibria M G. . CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360(6390): 783–787

[16]

Ma W, Xie S, Liu T. . Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nature Catalysis, 2020, 3(6): 478–487

[17]

Dinh C T, García de Arquer F P, Sinton D. . High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Letters, 2018, 3(11): 2835–2840

[18]

Huang J E, Li F, Ozden A. . CO2 electrolysis to multicarbon products in strong acid. Science, 2021, 372(6546): 1074–1078

[19]

Chen C, Li Y, Yu S. . Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule, 2020, 4(8): 1688–1699

[20]

Möller T, Ngo Thanh T, Wang X. . The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy & Environmental Science, 2021, 14(11): 5995–6006

[21]

Peng C, Luo G, Xu Z. . Lithiation-enabled high-eensity nitrogen vacancies electrocatalyze CO2 to C2 products. Advanced Materials, 2021, 33(40): 2103150

[22]

Yang P P, Zhang X L, Gao F Y. . Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. Journal of the American Chemical Society, 2020, 142(13): 6400–6408

[23]

Li H, Liu T, Wei P. . High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angewandte Chemie International Edition, 2021, 60(26): 14329–14333

[24]

Zhang X, Li J, Li Y Y. . Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. Journal of the American Chemical Society, 2021, 143(8): 3245–3255

[25]

Kas R, Hummadi K K, Kortlever R. . Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nature Communications, 2016, 7(1): 10748

[26]

Chen B, Xu J, Zou J. . Formate-selective CO2 electrochemical reduction with a hydrogen-reduction-suppressing bronze alloy hollow fiber electrode. ChemSusChem, 2020, 13(24): 6594–6601

[27]

Rabiee H, Zhang X, Ge L. . Tuning the product selectivity of the Cu hollow fiber gas diffusion electrode for efficient CO2 reduction to formate by controlled surface Sn electrodeposition. ACS Applied Materials & Interfaces, 2020, 12(19): 21670–21681

[28]

Rabiee H, Ge L, Zhang X. . Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Applied Catalysis B: Environmental, 2021, 298: 120538

[29]

Rabiee H, Ge L, Zhang X. . Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Applied Catalysis B: Environmental, 2021, 286: 119945

[30]

Zhu C, Shen G, Chen W. . Copper hollow fiber electrode for efficient CO2 electroreduction. Journal of Power Sources, 2021, 495: 229814

[31]

Li S, Chen W, Dong X. . Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide. Nature Communications, 2022, 13(1): 3080

[32]

Chen W, Chen S, Liang T. . High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 2018, 13(4): 345–350

[33]

Lei L, Pan F, Lindbrathen A. . Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nature Communications, 2021, 12(1): 268

[34]

Huang Z, Zhu L, Li A. . Renewable synthetic fuel: turning carbon dioxide back into fuel. Frontiers in Energy, 2022, 16(2): 145–149

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (2264KB)

3298

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/