Fabrication of layered structure VS4 anchor in 3D graphene aerogels as a new cathode material for lithium ion batteries

Lijun WU , Yu ZHANG , Bingjiang LI , Pengxiang WANG , Lishuang FAN , Naiqing ZHANG , Kening SUN

Front. Energy ›› 2019, Vol. 13 ›› Issue (3) : 597 -602.

PDF (1756KB)
Front. Energy ›› 2019, Vol. 13 ›› Issue (3) : 597 -602. DOI: 10.1007/s11708-018-0576-9
COMMUNICATION
COMMUNICATION

Fabrication of layered structure VS4 anchor in 3D graphene aerogels as a new cathode material for lithium ion batteries

Author information +
History +
PDF (1756KB)

Abstract

VS4 has gained more and more attention for its high theoretical capacity (449 mAh/g with 3e transfer) in lithium ion batteries (LIBs). Herein, a layered structure VS4 anchored in graphene aerogels is prepared and first reported as cathode material for LIBs. VS4@GAs composite exhibits an exceptional high initial reversible capacity (511 mAh/g), an excellent high-rate capability (191 mAh/g at the 5 C), and an excellent cyclic stability (239 mAh/g after 15 cycles).

Keywords

VS4 / graphene aerogels / cathode / lithium storage

Cite this article

Download citation ▾
Lijun WU, Yu ZHANG, Bingjiang LI, Pengxiang WANG, Lishuang FAN, Naiqing ZHANG, Kening SUN. Fabrication of layered structure VS4 anchor in 3D graphene aerogels as a new cathode material for lithium ion batteries. Front. Energy, 2019, 13(3): 597-602 DOI:10.1007/s11708-018-0576-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 2016, 1(7): 16071–16082

[2]

Li Y, Yao J, Uchaker E, et al. Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Advanced Energy Materials, 2013, 3(9): 1171–1175

[3]

Liu J, Zhou Y, Wang J, Pan Y, Xue D. Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chemical Communications (Cambridge), 2011, 47(37): 10380–10382

[4]

Li B, Cheng Z, Zhang N, Sun K. Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries. Nano Energy, 2014, 4: 7–13

[5]

Li B, Zhang N, Sun K. Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries. Small, 2014, 10(10): 2039–2046

[6]

Zhou Y, Liu P, Jiang F, Tian J, Cui H, Yang J. Vanadium sulfide sub-microspheres: a new near-infrared-driven photocatalyst. Journal of Colloid and Interface Science, 2017, 498: 442–448

[7]

Zhang B, Zou S, Cai R, Li M, He Z. Highly-efficient photocatalytic disinfection of Escherichia coli under visible light using carbon supported Vanadium Tetrasulfide nanocomposites. Applied Catalysis B: Environmental, 2018, 224: 383–393

[8]

Das D P, Parida K M. Enhanced catalytic activity of Ti, V, Mn-grafted silica spheres towards epoxidation reaction. Catalysis Letters, 2009, 128(1–2): 111–118

[9]

Al-Shamma L, Naman S. Kinetic study for thermal production of hydrogen from H2S by heterogeneous catalysis of vanadium sulfide in a flow system. International Journal of Hydrogen Energy, 1989, 14(3): 173–179

[10]

Jiang L, Lin B, Li X, et al. Monolayer MoS2-graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity. ACS Applied Materials & Interfaces, 2016, 8(4): 2680–2687

[11]

Tian R, Zhou Y, Duan H, et al. MOF-derived hollow Co3S4 quasi-polyhedron/MWCNT nanocomposites as electrodes for advanced lithium ion batteries and supercapacitors. ACS Applied Energy Materials, 2018, 1(2): 402–410

[12]

Zhu Y, Fan X, Suo L, Luo C, Gao T, Wang C. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano, 2016, 10(1): 1529–1538

[13]

Zhang Y, Wang N, Sun C, et al. 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chemical Engineering Journal, 2018, 332: 370–376

[14]

Xu X, Jeong S, Rout C S, et al. Lithium reaction mechanism and high rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries. Journal of Materials Chemistry A, 2014, 2(28): 10847–10853

[15]

Lui G, Jiang G, Duan A, et al. Synthesis and characterization of template-free VS4 nanostructured materials with potential application in photocatalysis. Industrial & Engineering Chemistry Research, 2015, 54(10): 2682–2689

[16]

Sun R, Wei Q, Li Q, et al. Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery. ACS Applied Materials & Interfaces, 2015, 7(37): 20902–20908

[17]

Liu P, Zhu K, Gao Y, Recent progress in the applications of vanadium-based oxides on energy storage: from low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication. Advanced Energy Materials, 2017, 7 (23):

[18]

Su D, Wang G. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano, 2013, 7(12): 11218–11226

[19]

Zhou Y, Tian J, Xu H, Yang J, Qian Y. VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Materials, 2017, 6: 149–156

[20]

Li Q, Chen Y, He J, Fu F, Lin J, Zhang W. Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 685: 294–299

[21]

Zhou Y, Li Y, Yang J, et al. Conductive polymer-coated VS4 sub-microspheres as advanced electrode materials in lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(29): 18797–18805

[22]

Cheng J, Gu G, Guan Q, Synthesis of a porous sheet-like V2O5-CNT nanocomposite using an ice-templating ‘bricks-and-mortar’assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2016, 4(7): 2729–2737

[23]

Yang Y, Huang J, Zeng J, Xiong J, Zhao J. Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Applied Materials & Interfaces, 2017, 9(38): 32801–32811

[24]

Chen D, Ji G, Ma Y, Lee J Y, Lu J. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Applied Materials & Interfaces, 2011, 3(8): 3078–3083

[25]

Li B, Rooney D W, Zhang N, Sun K. An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries. ACS Applied Materials & Interfaces, 2013, 5(11): 5057–5063

[26]

Fan L, Li B, Rooney D W, Zhang N, Sun K. In situ preparation of 3D graphene aerogels@hierarchical Fe3O4 nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chemical Communications (Cambridge), 2015, 51(9): 1597–1600

[27]

Cheng G, Akhtar M S, Yang O B, Stadler F J. Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(14): 6635–6642

[28]

Fan L, Zhang Y, Zhang Q, Wu X, Cheng J, Zhang N, Feng Y, Sun K. Graphene aerogels with anchored sub-micrometer mulberry-like ZnO particles for high-rate and long-cycle anode materials in lithium ion batteries. Small, 2016, 12(37): 5208–5216

[29]

Xiao J, Mei D, Li X, et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Letters, 2011, 11(11): 5071–5078

[30]

Xiao L, Wu D, Han S, et al. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Applied Materials & Interfaces, 2013, 5(9): 3764–3769

[31]

Fang W, Zhang N, Fan L, Sun K. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. Journal of Power Sources, 2016, 333: 30–36

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1756KB)

Supplementary files

FEP-18995-OF-WL_suppl_1

4818

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/