Near-field radiative thermoelectric energy converters: a review

Eric TERVO , Elham BAGHERISERESHKI , Zhuomin ZHANG

Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 5 -21.

PDF (543KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 5 -21. DOI: 10.1007/s11708-017-0517-z
REVIEW ARTICLE
REVIEW ARTICLE

Near-field radiative thermoelectric energy converters: a review

Author information +
History +
PDF (543KB)

Abstract

Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

Keywords

energy conversion systems / luminescent refrigeration / near-field radiation / thermophotovoltaic / thermoradiative cell

Cite this article

Download citation ▾
Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review. Front. Energy, 2018, 12(1): 5-21 DOI:10.1007/s11708-017-0517-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wernsman B, Mahorter R G, Siergiej R, Link S D, Wehrer R J, Belanger S J, Fourspring P, Murray S, Newman F, Taylor D, Rahmlow T. Advanced thermophotovoltaic devices for space nuclear power systems. AIP Conference Proceedings, 2005, 746(1): 1441–1448

[2]

Santhanam P, Gray D J, Ram R J. Thermoelectrically pumped light-emitting diodes operating above unity efficiency. Physical Review Letters, 2012, 108(9): 097403

[3]

Green M A. Solar Cells: Operating Principles, Technology and System Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1982

[4]

Wedlock B D. Thermo-photo-voltaic energy conversion. Proceedings of the IEEE, 1963, 51(5): 694–698

[5]

Bauer T. Thermophotovoltaics Basic Principles and Critical Aspects of System Design. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011

[6]

Strandberg R. Theoretical efficiency limits for thermoradiative energy conversion. Journal of Applied Physics, 2015, 117(5): 055105

[7]

Tauc J. The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction. Cechoslovackij fiziceskij zurnal, 1957, 7(3): 275–276

[8]

Berdahl P. Radiant refrigeration by semiconductor diodes. Journal of Applied Physics, 1985, 58(3): 1369–1374

[9]

Planck M. The Theory of Heat Radiation. Philadelphia, PA: P. Blakiston’s Son & Co, 1914

[10]

Polder D, Van Hove M. Theory of radiative heat transfer between closely spaced bodies. Physical Review B: Condensed Matter and Materials Physics, 1971, 4(10): 3303–3314

[11]

Pendry J B. Radiative exchange of heat between nanostructures. Journal of Physics Condensed Matter, 1999, 11(35): 6621–6633

[12]

Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surface Science Reports, 2005, 57(3–4): 59–112

[13]

Basu S, Zhang Z M, Fu C J. Review of near-field thermal radiation and its application to energy conversion. International Journal of Energy Research, 2009, 33(13): 1203–1232

[14]

Zhang Z M. Nano/microscale Heat Transfer. New York: McGraw-Hill, 2007

[15]

Biehs S A, Ben-Abdallah P, Rosa F. Nanoscale radiative heat transfer and its applications. In: Morozhenko V, eds. Infrared Radiation. London: InTech, 2012, 1–26

[16]

Reid M T H, Rodriguez A W, Johnson S G. Fluctuation-induced phenomena in nanoscale systems: harnessing the power of noise. Proceedings of the IEEE, 2013, 101(2): 531–545

[17]

Song B, Fiorino A, Meyhofer E, Reddy P. Near-field radiative thermal transport: from theory to experiment. AIP Advances, 2015, 5(5): 053503

[18]

Liu X, Wang L, Zhang Z M. Near-field thermal radiation: recent progress and outlook. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(2): 98–126

[19]

Francoeur M, Pinar Mengüç M. Role of fluctuational electrodynamics in near-field radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 280–293

[20]

Hu L, Narayanaswamy A, Chen X, Chen G. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Applied Physics Letters, 2008, 92(13): 133106

[21]

Rousseau E, Siria A, Jourdan G, Volz S, Comin F, Chevrier J, Greffet J J. Radiative heat transfer at the nanoscale. Nature Photonics, 2009, 3(9): 514–517

[22]

St-Gelais R, Guha B, Zhu L, Fan S, Lipson M. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Letters, 2014, 14(12): 6971–6975

[23]

Kim K, Song B, Fernández-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid M T H, García-Vidal F J, Cuevas J C, Meyhofer E, Reddy P. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387–391

[24]

St-Gelais R, Zhu L, Fan S, Lipson M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nature Nanotechnology, 2016, 11(6): 515–519

[25]

Shchegrov A V, Joulain K, Carminati R, Greffet J J. Near-field spectral effects due to electromagnetic surface excitations. Physical Review Letters, 2000, 85(7): 1548–1551

[26]

Howell J R, Menguc M P, Siegel R. Thermal Radiation Heat Transfer. Boca Raton: CRC press, 2010

[27]

Rytov S, Kravtsov Y A, Tatarskii V. Priniciples of Statistical Radiophysics: Elements of Random Fields. Berlin: Springer, 1989

[28]

Francoeur M, Pinar Mengüç M, Vaillon R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(18): 2002–2018

[29]

Bright T J, Liu X L, Zhang Z M. Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials. Optics Express, 2014, 22(S4): A1112–A1127

[30]

Song B, Ganjeh Y, Sadat S, Thompson D, Fiorino A, Fernandez-Hurtado V, Feist J, Garcia-Vidal F J, Cuevas J C, Reddy P, Meyhofer E. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nature Nanotechnology, 2015, 10(3): 253–258

[31]

Shi J W, Liu B A, Li P F, Ng L Y, Shen S. Near-field energy extraction with hyperbolic metamaterials. Nano Letters, 2015, 15(2): 1217–1221

[32]

Kim K, Song B, Fernandez-Hurtado V, Lee W, Jeong W H, Cui L J, Thompson D, Feist J, Reid M T H, Garcia-Vidal F J, Cuevas J C, Meyhofer E, Reddy P. Radiative heat transfer in the extreme near field. Nature, 2015, 528(7582): 387–391

[33]

Ijiro T, Yamada N. Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Applied Physics Letters, 2015, 106(2): 023103

[34]

Ito K, Miura A, Iizuka H, Toshiyoshi H. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Applied Physics Letters, 2015, 106(8): 083504

[35]

Lim M, Lee S S, Lee B J. Near-field thermal radiation between doped silicon plates at nanoscale gaps. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(19): 195136

[36]

Bernardi M P, Milovich D, Francoeur M. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nature Communications, 2016, 7: 12900

[37]

Watjen J I, Zhao B, Zhang Z M. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Applied Physics Letters, 2016, 109(20): 203112

[38]

Boriskina Svetlana V, Tong Jonathan K, Hsu W C, Liao B, Huang Y, Chiloyan V, Chen G. Heat meets light on the nanoscale. Nanophotonics, 2016, 5(1): 134–160

[39]

Wurfel P. The chemical potential of radiation. Journal of Physics. C. Solid State Physics, 1982, 15(18): 3967–3985

[40]

Brennan K F. The Physics of Semiconductors. Cambridge: Cambridge University Press, 1999

[41]

Landsberg P T. Photons at non-zero chemical potential. Journal of Physics. C. Solid State Physics, 1981, 14(32): L1025–L1027

[42]

Landsberg P T, Tonge G. Thermodynamic energy conversion efficiencies. Journal of Applied Physics, 1980, 51(7): R1–R20

[43]

Dorofeyev I. Thermodynamic functions of fluctuating electromagnetic fields within a heterogeneous system. Physica Scripta, 2011, 84(5): 055003

[44]

Essex C, Kennedy D C, Berry R S. How hot is radiation? American Journal of Physics, 2003, 71(10): 969–978

[45]

Nelson R E. A brief history of thermophotovoltaic development. Semiconductor Science and Technology, 2003, 18(5): S141–S143

[46]

Broman L. Thermophotovoltaics bibliography. Progress in Photovoltaics: Research and Applications, 1995, 3(1): 65–74

[47]

Basu S, Chen Y B, Zhang Z M. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6-7): 689–716

[48]

Zhou Z G, Sakr E, Sun Y B, Bermel P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 2016, 5(1): 1–21

[49]

Mustafa K F, Abdullah S, Abdullah M Z, Sopian K. A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renewable & Sustainable Energy Reviews, 2017, 71: 572–584

[50]

Datas A, Martí A. Thermophotovoltaic energy in space applications: review and future potential. Solar Energy Materials and Solar Cells, 2017, 161: 285–296

[51]

Bauer T, Forbes I, Pearsall N. The potential of thermophotovoltaic heat recovery for the UK industry. International Journal of Ambient Energy, 2004, 25(1): 19–25

[52]

Ostrowski L J, Pernisz U C, Fraas L M. Thermophotovoltaic energy conversion: technology and market potential. AIP Conference Proceedings, 1996, 358(1): 251–262

[53]

Ungaro C, Gray S K, Gupta M C. Solar thermophotovoltaic system using nanostructures. Optics Express, 2015, 23(19): A1149–A1156

[54]

Bierman D M, Lenert A, Chan W R, Bhatia B, Celanović I, Soljačić M, Wang E N. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nature Energy, 2016, 1(6): 16068

[55]

Wang L P, Zhang Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902

[56]

Zhao B, Wang L, Shuai Y, Zhang Z M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645

[57]

Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G. Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics. Scientific Reports, 2015, 5(1): 10661

[58]

DeSutter J, Bernardi M P, Francoeur M. Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm. Energy Conversion and Management, 2016, 108: 429–438

[59]

Whale M D. A fluctuational electrodynamic analysis of microscale radiative transfer and the design of microscale thermophotovoltaic devices. Dissertation for the Doctoral Degree. Cambridge, MA: Massachusetts Institute of Technology, 1997

[60]

Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130–142

[61]

Pan J L, Choy H K H, Fonstad C G. Very large radiative transfer over small distances from a black body for thermophotovoltaic applications. IEEE Transactions on Electron Devices, 2000, 47(1): 241–249

[62]

Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544–3546

[63]

Laroche M, Carminati R, Greffet J J. Near-field thermophotovoltaic energy conversion. Journal of Applied Physics, 2006, 100(6): 063704

[64]

Park K, Basu S, King W P, Zhang Z M. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 305–316

[65]

Francoeur M, Vaillon R, Mengüç M P. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Transactions on Energy Conversion, 2011, 26(2): 686–698

[66]

Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Soljačić M. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Optics Express, 2012, 20(S3): A366–A384

[67]

Messina R, Ben-Abdallah P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Scientific Reports, 2013, 3(1): 1383

[68]

Guo Y, Jacob Z. Thermal hyperbolic metamaterials. Optics Express, 2013, 21(12): 15014–15019

[69]

Svetovoy V B, Palasantzas G. Graphene-on-silicon near-field thermophotovoltaic cell. Physical Review Applied, 2014, 2(3): 034006

[70]

Bright T J, Wang L P, Zhang Z M. Performance of near-field thermophotovoltaic cells enhanced with a backside reflector. Journal of Heat Transfer, 2014, 136(6): 062701–062709

[71]

Chen K, Santhanam P, Fan S. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery. Applied Physics Letters, 2015, 107(9): 091106

[72]

Bernardi M P, Dupré O, Blandre E, Chapuis P O, Vaillon R, Francoeur M. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Scientific Reports, 2015, 5(1): 11626

[73]

Molesky S, Jacob Z. Ideal near-field thermophotovoltaic cells. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(20): 205435

[74]

Lim M, Jin S, Lee S S, Lee B J. Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications. Optics Express, 2015, 23(7): A240–A253

[75]

Chang J Y, Yang Y, Wang L. Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications. International Journal of Heat and Mass Transfer, 2015, 87: 237–247

[76]

Jin S, Lim M, Lee S S, Lee B J. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap. Optics Express, 2016, 24(6): A635–A649

[77]

Lim M, Lee S S, Lee B J. Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 197: 84–94

[78]

St-Gelais R, Bhatt G R, Zhu L, Fan S, Lipson M. Hot carrier-based near-field thermophotovoltaic energy conversion. ACS Nano, 2017, 11(3): 3001–3009

[79]

Watjen J I, Liu X L, Zhao B, Zhang Z M. A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices. Journal of Heat Transfer, 2017, 139(5): 052704

[80]

DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Applied Physics Letters, 2001, 79(12): 1894–1896

[81]

DiMatteo R, Greiff P, Seltzer D, Meulenberg D, Brown E, Carlen E, Kaiser K, Finberg S, Nguyen H, Azarkevich J, Baldasaro P, Beausang J, Danielson L, Dashiell M, DePoy D, Ehsani H,Topper W, Rahner K, Sieriej R. Micron-gap thermophotovoltaics (MTPV). AIP Conference Proceedings, 2004, 738(1): 42–51

[82]

Hanamura K, Mori K. Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface. AIP Conference Proceedings, 2007, 890(1): 291–296

[83]

Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957

[84]

Guo Y, Cortes C L, Molesky S, Jacob Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Applied Physics Letters, 2012, 101(13): 131106

[85]

Byrnes S J, Blanchard R, Capasso F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 3927–3932

[86]

Santhanam P, Fan S H. Thermal-to-electrical energy conversion by diodes under negative illumination. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(16): 161410 (R)

[87]

Hsu W C, Tong J K, Liao B L, Huang Y, Boriskina S V, Chen G. Entropic and near-field improvements of thermoradiative cells. Scientific Reports, 2016, 6(1): 34837

[88]

Wang B, Lin C, Teo K H, Zhang Z. Thermoradiative device enhanced by near-field coupled structures. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 196: 10–16

[89]

Fernández J J. Thermoradiative energy conversion with quasi-fermi level variations. IEEE Transactions on Electron Devices, 2017, 64(1): 250–255

[90]

Dousmanis G C, Mueller C W, Nelson H, Petzinger K G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Physical Review, 1964, 133(1A): A316–A318

[91]

Mal’Shukov A, Chao K. Opto-thermionic refrigeration in semiconductor heterostructures. Physical Review Letters, 2001, 86(24): 5570–5573

[92]

Han P, Jin K, Zhou Y, Wang X, Ma Z, Ren S F, Mal’Shukov A G, Chao K A. Analysis of optothermionic refrigeration based on semiconductor heterojunction. Journal of Applied Physics, 2006, 99(7): 074504

[93]

Yu S Q, Wang J B, Ding D, Johnson S R, Vasileska D, Zhang Y H. Impact of electronic density of states on electroluminescence refrigeration. Solid-State Electronics, 2007, 51(10): 1387–1390

[94]

Heikkilä O, Oksanen J, Tulkki J. Ultimate limit and temperature dependency of light-emitting diode efficiency. Journal of Applied Physics, 2009, 105(9): 093119

[95]

Yen S T, Lee K C. Analysis of heterostructures for electroluminescent refrigeration and light emitting without heat generation. Journal of Applied Physics, 2010, 107(5): 054513

[96]

Oksanen J, Tulkki J. Thermophotonic heat pump—a theoretical model and numerical simulations. Journal of Applied Physics, 2010, 107(9): 093106

[97]

Lee K C, Yen S T. Photon recycling effect on electroluminescent refrigeration. Journal of Applied Physics, 2012, 111(1): 014511

[98]

Santhanam P, Huang D, Gray D J, Ram R J. Electro-luminescent cooling: light emitting diodes above unity efficiency. In: Laser Refrigeration of Solids VI, San Francisco, CA: SPIE, 2013, 863807

[99]

Chen K, Santhanam P, Sandhu S, Zhu L, Fan S. Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134301

[100]

Liu X L, Zhang Z M. High-performance electroluminescent refrigeration enabled by photon tunneling. Nano Energy, 2016, 26: 353–359

[101]

Ashley T, Elliott C T, Gordon N T, Hall R S, Johnson A D, Pryce G J. Negative luminescence from In1−xAlxSb and CdxHg1−xTe diodes. Infrared Physics & Technology, 1995, 36(7): 1037–1044

[102]

Elliott C T. Negative luminescence and its applications. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 567

[103]

Ashley T, Nash G R. Negative luminescence. In: Krier A, eds. Mid-infrared Semiconductor Optoelectronics. London: Springer London, 2006, 453–485

[104]

Ivanov-Omskii V I, Matveev B A. Negative luminescence and devices based on this phenomenon. Semiconductors, 2007, 41(3): 247–258

[105]

Chen K, Santhanam P, Fan S. Near-field enhanced negative luminescent refrigeration. Physical Review Applied, 2016, 6(2): 024014

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (543KB)

6777

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/