Analysis of radiation heat transfer and temperaturedistributions of solar thermochemical reactor for syngas production

Bachirou GUENE LOUGOU , Yong SHUAI , Xiang CHEN , Yuan YUAN , Heping TAN , Huang XING

Front. Energy ›› 2017, Vol. 11 ›› Issue (4) : 480 -492.

PDF (617KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (4) : 480 -492. DOI: 10.1007/s11708-017-0506-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Analysis of radiation heat transfer and temperaturedistributions of solar thermochemical reactor for syngas production

Author information +
History +
PDF (617KB)

Abstract

This paper investigated radiation heat transfer and temperaturedistributions of solar thermochemical reactor for syngas productionusing the finite volume discrete ordinate method (fvDOM) and P1 approximationfor radiation heat transfer. Different parameters including absorptivity,emissivity, reflection based radiation scattering, and carrier gasflow inlet velocity that would greatly affect the reactor thermalperformance were sufficiently investigated. The fvDOM approximationwas used to obtain the radiation intensity distribution along thereactor. The drop in the temperature resulted from the radiation scatteringwas further investigated using the P1 approximation. The results indicatedthat the reactor temperature difference between the P1 approximationand the fvDOM radiation model was very close under different operatingconditions. However, a big temperature difference which increasedwith an increase in the radiation emissivity due to the thermal non-equilibriumwas observed in the radiation inlet region. It was found that theincident radiation flux distribution had a strong impact on the temperaturedistribution throughout the reactor. This paper revealed that thetemperature drop caused by the boundary radiation heat loss shouldnot be neglected for the thermal performance analysis of solar thermochemicalreactor.

Keywords

solar thermochemical reactor / incident radiation flux / temperature distribution / radiation absorptivity / radiation emissivity / thermal performance analysis

Cite this article

Download citation ▾
Bachirou GUENE LOUGOU, Yong SHUAI, Xiang CHEN, Yuan YUAN, Heping TAN, Huang XING. Analysis of radiation heat transfer and temperaturedistributions of solar thermochemical reactor for syngas production. Front. Energy, 2017, 11(4): 480-492 DOI:10.1007/s11708-017-0506-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shuai YWang  F QXia  X LTan  H PLiang  Y C. Radiative properties of a solar cavity receiver/reactor with quartz window. International Journal of Hydrogen Energy201136(19): 12148–12158 

[2]

Suter SSteinfeld  AHaussener S. Pore-level engineering ofmacroporous media for increased performance of solar-driven thermochemicalfuel processing. International Journalof Heat and Mass Transfer201478: 688–698 

[3]

Palumbo RKeunecke  MMöller S Steinfeld A. Reflections on the design of solar thermal chemical reactors:thoughts in transformation. Energy200429(5–6): 727–744 

[4]

Rupesh SMuraleedharan  CArun P. Energy and exergy analysisof syngas production from different biomasses through air-steam gasification. Frontiers in Energy2016, [Epub ahead of print] 

[5]

Ni WChen  Z. Synergistic utilization of coal and other energy—key to low carbon economy. Frontiers in Energy20115(1): 1–19 

[6]

Müller RHaeberling  PPalumbo R D. Further advances toward thedevelopment of a direct heating solar thermal chemical reactor forthe thermal dissociation of ZnO(s). Solar Energy200680(5): 500–511 

[7]

Bellan SAlonso  EGomez-Garcia F Perez-Rabago C Gonzalez-Aguilar J Romero M. Thermal performance of lab-scalesolar reactor designed for kinetics analysis at high radiation fluxes. Chemical Engineering Science2013101: 81–89

[8]

Levêqque GAbanades  S. Investigation of thermal and carbothermal reduction of volatile oxides(ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetryfor thermochemical production of solar fuels. Thermochimica Acta2015605: 86–94 

[9]

Alonso ERomero  M. A directly irradiated solar reactor for kinetic analysis of non-volatile metaloxides reductions. International Journalof Energy Research201539(9): 1217–1228 

[10]

Ackermann STakacs  MScheffe J Steinfeld A. Reticulated porous ceria undergoing thermochemical reduction withhigh-flux irradiation. International Journalof Heat and Mass Transfer2017107: 439–449 

[11]

Bachirou G LShuai  YZhang J Huang X Yuan YTan  H P. Syngas production by simultaneous splitting of H2O andCO2 via iron oxide (Fe3O4) redox reactions under high-pressure. International Journal of Hydrogen Energy201641(44): 19936–19946 

[12]

Kodama TGokon  N. Thermochemical cycles for high-temperature solar hydrogen production. Chemical Reviews2007107(10): 4048–4077 

[13]

Steinfeld ASchubnell  M. Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy199350(1): 19–25 

[14]

Costandy JEl Ghazal  NMohamed M T Menon A Shilapuram V Ozalp N. Effect of reactor geometryon the temperature distribution of hydrogen producing solar reactors. International Journal of Hydrogen Energy201237(21): 16581–16590 

[15]

Kodama T. High-temperature solar chemistry for converting solarheat to chemical fuels. Progress in Energy and Combustion Science200329(6): 567–597 

[16]

Guene Lougou B Hong JShuai  YHuang X Yuan YTan  H P. Production mechanism analysis of H2 and CO via solarthermochemical cycles based on iron oxide (Fe3O4) at high temperature. Solar Energy2017148: 117–127 

[17]

Loutzenhiser P G Galvez M E Hischier L Stamatiou A Frei ASteinfeld  A. CO2 splitting via two-step solar thermochemicalcycles with Zn/ZnO and FeO/Fe3O4 redox reactions II: kinetic analysis. Energy & Fuels200923(5): 2832–2839 

[18]

Gokon NMataga  TKondo N Kodama T. Thermochemical two-step water splitting by internally circulatingfluidized bed of NiFe2O4 particles: successive reaction of thermal-reductionand water-decomposition steps. International Journal of Hydrogen Energy201136(8): 4757–4767

[19]

Romero MSteinfeld  A. Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science20125(11): 9234–9245

[20]

Alonso EPérez-Rábago  CGonzález-Aguilar JRomero M. A novel lab-scale solar reactor for kineticanalysis of nonvolatile metal oxides thermal reductions. Energy Procedia201457: 561–569

[21]

Abanades SCharvin  PFlamant G. Design and simulation ofa solar chemical reactor for the thermal reduction of metal oxides:case study of zinc oxide dissociation. Chemical Engineering Science200762(22): 6323–6333 

[22]

Schunk L OHaeberling  PWepf S Wuillemin D Meier A Steinfeld A. A receiver-reactor for the solar thermaldissociation of zinc oxide. Journal of Solar Energy Engineering, Transactions of the ASME2008130(2): 0210091–0210096

[23]

Wang MSiddiqui  K. The impact of geometrical parameters on the thermal performance ofa solar receiver of dish-type concentrated solar energy system. Renewable Energy201035(11): 2501–2513

[24]

Chabane FHatraf  NMoummi N. Experimental study of heat transfer coefficientwith rectangular baffle fin of solar air heater. Frontiers in Energy20148(2): 160–172 

[25]

Steinfeld ASchubnell  M. Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy199350(1): 19–25 

[26]

Shuai YXia  X LTan  H P. Radiation performance of dish solar concentratorcavity/receiver systems. Solar Energy200882(1): 13–21 

[27]

Cheng Z DHe  Y LXiao  JTao Y B Xu R J. Three-dimensional numericalstudy of heat transfer characteristics in the receiver tube of parabolictrough solar collector. International Communications in Heat and Mass Transfer201037(7): 782–787 

[28]

Mao Q, Shuai YYuan Y. Study on radiation flux of the receiverwith a parabolic solar concentrator system. Energy Conversion and Management201484: 1–6 

[29]

Villafán-Vidales H I Abanades S Caliot C Romero-Paredes H. Heat transfer simulationin a thermochemical solar reactor based on a volumetric porous receiver. Applied Thermal Engineering201131(16): 3377–3386 

[30]

Wu Z YCaliot  CFlamant G Wang Z. Coupled radiation and flow modeling in ceramic foam volumetric solarair receivers. Solar Energy201185(9): 2374–2385 

[31]

Yin J YLiu  L H. Analysis of the radiation heat transfer process of phase change for a liquiddroplet radiator in space power systems. Frontiers in Energy20115(2): 166–173 

[32]

Guene Lougou B Shuai Y Xing HYuan  YTan H P. Thermal performance analysisof solar thermochemical reactor for syngas production. International Journal of Heat and Mass Transfer2017111: 410–418 

[33]

Wang F QShuai  YTan H P Yu C L. Thermal performance analysis of porous media receiver with concentratedsolar irradiation. International Journalof Heat and Mass Transfer201362(1): 247–254 

[34]

Wang F QShuai  YTan H P Zhang X F Mao Q J. Heat transfer analyses ofporous media receiver with multi-dish collector by coupling MCRT andFVM method. Solar Energy201393: 158–168 

[35]

Wang F QTan  J YYong  STan H P Chu S X. Thermal performance analysesof porous media solar receiver with different irradiative transfermodels. International Journal of Heat andMass Transfer201478: 7–16 

[36]

Trépanier J-Y Melot M Camarero R Petro E. Comparison of two models for radiative heat transferin high-temperature thermal plasmas. Modelling and Simulation in Engineering2011, 285108

[37]

Kräupl SSteinfeld  A. Experimental investigation of a vortex-flow solar chemical reactorfor the combined ZnO-reduction and CH4-reforming. Journal of Solar Energy Engineering, Transactions of the ASME2001123(3): 237–243

[38]

Modest M F. Radiative Heat Transfer. 3rd edition. San Diego: Academic Press2013

[39]

Modest M F. Radiative Heat Transfer. Burlington: Academic Press2003

[40]

Sazhin S SSazhina  E MFaltsi-Saravelou  OWild P. The P-1 model for thermal radiation transfer: advantagesand limitations. Fuel199675(3): 289–294 

[41]

Abanades SFlamant  G. Experimental study and modeling of a high temperature solar chemicalreactor for hydrogen production from methane cracking. International Journal of Hydrogen Energy200732(10–11): 1508–1515 

[42]

Abanades SFlamant  G. Production of hydrogen by thermal methane splitting in a nozzle-typelaboratory scale solar reactor. International Journal of Hydrogen Energy200530(8): 843–853 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbHGermany

AI Summary AI Mindmap
PDF (617KB)

3595

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/