Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction

Na SUN , Minglei WANG , Jinfa CHANG , Junjie GE , Wei XING , Guangjie SHAO

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 310 -317.

PDF (485KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 310 -317. DOI: 10.1007/s11708-017-0491-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction

Author information +
History +
PDF (485KB)

Abstract

Pd nanoparticles supported on nitrogen doped carbon black (Vulcan XC-72R) with two different levels of doping were prepared by the microwave-assisted ethylene glycol reduction process and used as catalyst for the formic acid electro-oxidation (FAEO). The results indicate that the different nitrogen doping contents in Pd/N-C catalysts have a significant effect on the performance of FAEO. A higher N content facilitates the uniform dispersion of Pd nanoparticles on carbon black with narrow particle size distribution. Furthermore, the electrochemical results show that the catalyst with a higher N-doping content possesses a higher catalytic activity and a long-term stability for FAEO. The peak current density of the Pd/N-C (high) catalyst is 1.27 and 2.31 times that of the Pd/N-C (low) and homemade Pd/C-H catalyst. The present paper may provide a simple method for preparation of high-performance anode catalyst for direct formic acid fuel cells (DFAFCs).

Keywords

formic acid electro-oxidation / nitrogen doped / oxidized carbon / nitrogen content

Cite this article

Download citation ▾
Na SUN, Minglei WANG, Jinfa CHANG, Junjie GE, Wei XING, Guangjie SHAO. Nitrogen-doped carbon black supported Pd nanoparticles as an effective catalyst for formic acid electro-oxidation reaction. Front. Energy, 2017, 11(3): 310-317 DOI:10.1007/s11708-017-0491-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rice CHaa  SMasela R I Wieckowski A . Catalysts for direct formic acid fuel cells. Journal of Power Sources2003115(2): 229–235 

[2]

Wang JLiu  YOkada T . Novel platinum-macrocycle composite catalysts for direct formic acid fuel cells. Journal of Applied Electrochemistry201646(8): 901–905 

[3]

Yu XPickup  P G. Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources2008182(1): 124–132 

[4]

Antolini E. Palladium in fuel cell catalysis. Energy & Environmental Science20092(9): 915–931 

[5]

El-Nagar G ADarweesh  A FSadiek  I. A novel nano-palladium complex anode for formic acid electro-oxidation. Electrochimica Acta2016215: 334–338 

[6]

Feng LYao  SZhao X Yan LLiu  CXing W . Electrocatalytic properties of Pd/C catalyst for formic acid electrooxidation promoted by europium oxide. Journal of Power Sources2012197: 38–43 

[7]

Xiong BZhou  YZhao Y Wang JChen  XO’Hayre R Shao Z. The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon201352: 181–192 

[8]

Liang JHassan  MZhu D Guo LBo  X. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science2017490: 576–586 

[9]

Liu DLi  LYou T . Superior catalytic performances of platinum nanoparticles loaded nitrogen-doped graphene toward methanol oxidation and hydrogen evolution reaction. Journal of Colloid and Interface Science2017487: 330–335 

[10]

Ramakrishna S U B Srinivasulu Reddy D Shiva Kumar S Himabindu V . Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. International Journal of Hydrogen Energy201641(45): 20447–20454 

[11]

Xiong QChi  HZhang J Tu J. Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. Journal of Alloys and Compounds2016688, Part B: 729–735

[12]

Xu GDou  HGeng X Han JChen  LZhu H . Free standing three-dimensional nitrogen-doped carbon nanowire array for high-performance supercapacitors. Chemical Engineering Journal2017308: 222–228 

[13]

Xu JJu  ZCao J Wang WWang  CChen Z . Microwave synthesis of nitrogen-doped mesoporous carbon/nickel-cobalt hydroxide microspheres for high-performance supercapacitors. Journal of Alloys and Compounds2016689: 489–499 

[14]

Zhang YChen  LMeng Y Xie JGuo  YXiao D . Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. Journal of Power Sources2016335: 20–30 

[15]

Wu GZelenay  P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Accounts of Chemical Research201346(8): 1878–1889 

[16]

Matter P HZhang  LOzkan U S . The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis2006239(1): 83–96 

[17]

Bae GYoun  D HHan  SLee J S . The role of nitrogen in a carbon support on the increased activity and stability of a Pt catalyst in electrochemical hydrogen oxidation. Carbon201351: 274–281 

[18]

Chang JSun  XFeng L Xing WQin  XShao G . Effect of nitrogen-doped acetylene carbon black supported Pd nanocatalyst on formic acid electrooxidation. Journal of Power Sources2013239: 94–102 

[19]

Xiao MZhu  JGe J Liu CXing  W. The enhanced electrocatalytic activity and stability of supported Pt nanopartciles for methanol electro-oxidation through the optimized oxidation degree of carbon nanotubes. Journal of Power Sources2015281: 34–43 

[20]

Ham D JPak  CBae G H Han SKwon  KJin S A Chang H Choi S H Lee J S . Palladium-nickel alloys loaded on tungsten carbide as platinum-free anode electrocatalysts for polymer electrolyte membrane fuel cells. Chemical Communications201147(20): 5792–5794 

[21]

Kawaguchi TSugimoto  WMurakami Y Takasu Y . Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu. Electrochemistry Communications20046(5): 480–483 

[22]

Zhang J FXu  YZhang B . Facile synthesis of 3D Pd-P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chemical Communications201450(88): 13451–13453 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (485KB)

3124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/