Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy

Nebojsa S. MARINKOVIC , Kotaro SASAKI , Radoslav R. ADZIC

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 236 -244.

PDF (353KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 236 -244. DOI: 10.1007/s11708-017-0487-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy

Author information +
History +
PDF (353KB)

Abstract

A method is described to determine the internal structure of electrocatalyst nanoparticles by in situ X-ray absorption spectroscopy (XAS). The nondestructive spectroscopic technique typically utilizing synchrotron radiation as the source measures changes in the X-ray absorption coefficient as a function of energy. The bulk technique has found its use for materials characterization in all scientific areas, including nanomaterials. The analysis of the internal structure of nanoparticles reveals interatomic distances and coordination numbers for each element, and their values and mutual relations indicate whether the elements form a homogeneous or heterogeneous mixture. The core-shell heterogeneous structure in which certain elements are predominantly located in the core, and others form the encapsulating shell is of particular importance in catalysis and electrocatalysis because it may reduce the amount of precious metals in nanoparticles by replacing the atoms in the core of nanoparticles with more abundant and cheaper alternatives. The examples of nanoparticle structures designed in the laboratory and the approach to model efficient catalysts through systematic analysis of XAS data in electrochemical systems consisting of two and three metals are also demonstrated.

Keywords

X-ray absorption spectroscopy / EXAFS / XANES / nanocatalysts / core shell

Cite this article

Download citation ▾
Nebojsa S. MARINKOVIC, Kotaro SASAKI, Radoslav R. ADZIC. Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy. Front. Energy, 2017, 11(3): 236-244 DOI:10.1007/s11708-017-0487-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calvin  S. XAFS for Everyone. Boca Raton, FL: CRC Press-Taylor and Francis Group, 2013

[2]

Bunker  G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge: Cambridge University Press, 2010

[3]

Stern  E A . Theory of the extended X-ray absorption fine structure. Physical Review B: Condensed Matter and Materials Physics197410(8): 3027–3037

[4]

Frenkel  A. Solving the 3D structure of metal nanoparticles. Zeitschrift fur Kristallographie2007222(11): 605–611

[5]

Sasaski  KMarinkovic   N S. X-ray absorption spectroscopic characterization of nanomaterial catalysts in electrochemistry and fuel cells. In: Kumar C S S R. (Ed.) X-ray and Neutron Techniques for Nanomaterials Characterization, Chapter 6, and the literature cited therein. New York: Springer, 2016

[6]

Sasaki  KWang   J XNaohara   HMarinkovic  N More  K Inada  H Adzic  R R . Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochimica Acta201055(8): 2645–2652

[7]

Lamy  CCoutanceau   CLeger  J M . The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Barbaro P, Bianchini C. (Eds.) Catalysis for sustainable energy production. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. kGaA, 2009

[8]

Demirci  U B . Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cell. Journal of Power Sources2007173(1): 11–18

[9]

Kowal  ALi   MShao  M Sasaki  K Vukmirovic  M B Zhang  J Marinkovic  N S Liu  P Frenkel  A I Adzic  R R . Ternary Pt/Rh/SnO2electrocatalysts for oxidizing ethanol to CO2Nature Materials20098(4): 325–330

[10]

Li  MKowal   ASasaki  K Marinkovic  N S Su  D Korach  E Liu  P Adzic  R R . Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochimica Acta201055(14): 4331–4338

[11]

Li  MMarinkovic   NSasaki  K In situ characterization of ternary Pt–Rh–SnO2/C catalysts for ethanol electrooxidation. Electrocatalysis20123(3–4): 376–385

[12]

Sasaki  KNaohara   HCai  Y Choi  Y M Liu  P Vukmirovic  M B Wang  J X Adzic  R R . Coreprotected platinum monolayer shell high-stability electrocatalysts for fuel cell cathodes. Angewandte Chemie International Edition201055(8): 2645–2652

[13]

Sasaki  KNaohara   HChoi  Y M Cai  Y Chen  W H Liu  P Adzic  R R . Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Communications20123: 1115

[14]

Sasaki  KKuttiyiel   K ABarrio   LSu  D Frenkel  A Marinkovic  N Mahajan  D Adzic  R R . Carbon supported IrNi core-shell nanoparticles: synthesis, characterization, and catalytic activity. Journal of Physical Chemistry C2011115(20): 9894–9902

[15]

Zhang  J L Vukmirovic  M B Xu  Y Mavrikakis  M Adzic  R R . Controlling the catalytic activity of platinum-monolayer  electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie International Edition200544(14): 2132–2135

[16]

Glasner  DFrenkel   A I. Geometrical characteristics of regular polyhedra: application to EXAFS studies of nanoclusters. AIP Conference Proceedings2007882(1): 746–748

[17]

Sasaki  KMarinkovic   N SIsaacs   H SAdzic   R R. Synchrotron-based in situ characterization of carbon-supported platinum and platinum monolayer electrocatalysts. ACS Catalysis20166(1): 69–76

[18]

Arruda  T M Shyam  B Ziegelbauer  J M Mukerjee  S Ramaker  D E . Investigation into the competitive and site-specific nature of anion adsorption on Pt using in situ X-ray absorption spectroscopy. Journal of Physical Chemistry C2008112(46): 18087–18097

[19]

Teliska  MO’Grady   W ERamaker   D E. Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L23 X-ray absorption spectroscopy. Journal of Physical Chemistry B2005109(16): 8076–8084

[20]

Conway  B E . Electrochemical oxide film formation at noble metals as a surface-chemical process. Progress in Surface Science199549(4): 331–452

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (353KB)

3568

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/