Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction

Hongjie ZHANG , Yachao ZENG , Longsheng CAO , Limeng YANG , Dahui FANG , Baolian YI , Zhigang SHAO

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 260 -267.

PDF (409KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 260 -267. DOI: 10.1007/s11708-017-0499-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction

Author information +
History +
PDF (409KB)

Abstract

In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic performance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt3Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt3Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (Oads or OHads) and the release of active sites.

Keywords

PtNi alloy / nanowires / oxygen reduction reaction / enhanced activity / good stability

Cite this article

Download citation ▾
Hongjie ZHANG, Yachao ZENG, Longsheng CAO, Limeng YANG, Dahui FANG, Baolian YI, Zhigang SHAO. Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction. Front. Energy, 2017, 11(3): 260-267 DOI:10.1007/s11708-017-0499-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature2012486(7401): 43–51

[2]

Tang QJiang  LJiang Q Wang SSun  G. Enhanced activity and stability of a Au decorated Pt/PdCo/C electrocatalyst toward oxygen reduction reaction. Electrochimica Acta201277(9): 104–110

[3]

Bele MJovanovic  PPavlisic A Jozinovic B Zorko M Recnik A Chernyshova E Hocevar S Hodnik N Gaberscek M . A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis. Chemical Communications201450(86): 13124–13126

[4]

Zhang JSasaki  KSutter E Adzic R R . Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science2007315(5809): 220–222

[5]

Wang Y JZhao  N NFang  B ZLi  HBi X T T Wang H J . Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chemical Reviews2015115(9): 3433–3467

[6]

Chen Z WHiggins  DYu A P Zhang L Zhang J J . A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science20114(9): 3167–3192

[7]

Zheng YJiao  YJaroniec M Jin Y G Qiao S Z . Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small20128(23): 3550–3566

[8]

Bai Y ZYi  B LLi  JJiang S F Zhang H J Shao Z G Song Y J . A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework. Chinese Journal of Catalysis201637(7): 1127–1133

[9]

Greeley JMavrikakis  M. Alloy catalysts designed from first principles. Nature Materials20043(11): 810–815

[10]

Wu J BYang  H. Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research201346(8): 1848–1857

[11]

Zhang JMo  YVukmirovic M B Klie RSasaki  KAdzic R R . Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. Journal of Physical Chemistry B Materials Surfaces Interfaces Amp Biophysical2004108(30): 10955–10964

[12]

Zhang J LVukmirovic  M BXu  YMavrikakis M Adzic R R . Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie200544(14): 2132–2135

[13]

Zhu H YZhang  SGuo S J Su DSun  S H. Synthetic control of FePtM nanorods (M= Cu, Ni) to enhance the oxygen reduction reaction. Journal of the American Chemical Society2013135(19): 7130–7133

[14]

You H JYang  S CDing  B JYang  H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. ChemInform201342(7): 2880–2904

[15]

Zhao XYin  MMa L Liang L Liu C P Liao J H Lu T H Xing W. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science20114(8): 2736–2753

[16]

Li Y JChen  LChen K Quan F X Chen C F . Monodisperse PdCu@PtCu Core@Shell nanocrystal and their high activity and durability for oxygen reduction reaction. Electrochimica Acta2016192: 227–233

[17]

Wang GHuang  BXiao L Ren ZChen  HWang D Abruña H D Lu JZhuang  L. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. Journal of the American Chemical Society2014136(27): 9643–9649

[18]

Huang X QZhao  Z PChen  YZhu E B Li M F Duan X F Huang Y . A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy & Environmental Science20147(9): 2957–2962

[19]

Huang X QZhao  Z PCao  LChen Y Zhu E B Lin Z Y Li M F Yan A M Zettl A Wang Y M Duan X F Mueller T Huang Y . High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science2015348(6240): 1230–1234

[20]

Chen CKang  Y JHuo  Z YZhu  Z WHuang  W YXin  H L LSnyder  J DLi  D GHerron  J AMavrikakis  MChi M F More K L Li Y D Markovic N M Somorjai G A Yang P D Stamenkovic V R . Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014343(6177): 1339–1343

[21]

Yang H ZZhang  JSun K Zou S Z Fang J Y . Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes. Angewandte Chemie International Edition in English201049(38): 6848–6851

[22]

Wang S YJiang  S PWang  XGuo J . Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells. Electrochimica Acta201156(3): 1563–1569

[23]

Pozio Ade Francesco  MCemmi A Cardellini F Giorgi L . Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources2002105(1): 13–19

[24]

Stamenkovic V R Fowler B Mun B S Wang G F Ross P N Lucas C A Markovic N M . Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science2007315(5811): 493–497

[25]

Bu L ZZhang  NGuo S J Zhang X Li JYao  J LWu  TLu G Ma J Y Su DHuang  X Q. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science2016354(6318): 1410–1414

[26]

Suo Y GZhuang  LLu J T . First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angewandte Chemie200746(16): 2862–2864

[27]

Jayasayee Kvan Veen  J A RManivasagam  T GCelebi  SHensen E J M de Bruijn F A . Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals. Applied Catalysis B: Environmental2012111–112(2): 515–526

[28]

Wang D SLi  Y D. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Advanced Materials201123(9): 1044–1060

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (409KB)

3703

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/