Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics

Sahithya REDDIVARI , Christian LASTOSKIE , Ruofei WU , Junliang ZHANG

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 365 -373.

PDF (409KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 365 -373. DOI: 10.1007/s11708-017-0500-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics

Author information +
History +
PDF (409KB)

Abstract

Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn2O4. Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn2O4 ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn2O4 surface is the primary reason for reduced cell life in LiMn2O4 batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn2+ in this interface layer are not yet well understood.

To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn2O4 cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

Keywords

lithium manganese oxide batteries / reactive force field (ReaxFF) / cathode-electrolyte interface layer / molecular dynamics

Cite this article

Download citation ▾
Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG. Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese oxide batteries from reactive force field (ReaxFF) based molecular dynamics. Front. Energy, 2017, 11(3): 365-373 DOI:10.1007/s11708-017-0500-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scrosati BGarche  J. Lithium batteries: status, prospects and future. Journal of Power Sources2010195(9): 2419–2430 

[2]

Dunn BKamath  HTarascon J M . Electrical energy storage for the grid: a battery of choices. Science2011334(6058): 928–935

[3]

Desilvestro JHaas  O. Metal oxide cathode materials for electrochemical energy storage: a review. ChemInform1990137(1): 5C–22C

[4]

Vetter J,Novák P, Wagner M R, Veit C,Moller   K C,Besenhard  J O,WinterM, Wohlfahrt-Mehrens MVogler C, Hammouche A.Ageing mechanisms in lithium-ion batteries. Journal of Power Sources2005147(1): 269–281

[5]

Rodriguezcarvajal J Rousse G Masquelier C Hervieu M . Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Physical Review Letters199881(21): 4660–4663

[6]

Amine KChen  C HLiu  JHammond M Jansen A Dees DBloom  IVissers D Henriksen G . Factors responsible for impedance rise in high power lithium ion batteries. Journal of Power Sources200197(01): 684–687

[7]

Xu BFell  C RChi  MMeng Y S . Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy & Environmental Science20114(6): 2223–2233 

[8]

Chen CLiu  JAmine K . Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. Journal of Power Sources200196(2): 321–328 

[9]

Edström KGustafsson  TThomas J O . The cathode-electrolyte interface in the Li-ion battery. Electrochimica Acta200450(2–3): 397–403

[10]

Balbuena P BWang  Y H. Lithium-ion Batteries: Solid-electrolyte Interphase. USA: Imperial College Press2004

[11]

Yang LRavdel  BLucht B L . Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters201013(8): A95–A97 

[12]

Zhan CLu  JJeremy K A Wu TJansen  A N. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nature Communications20134(9): 2437

[13]

Edstrom KGustafsson  TThomas J O . The cathode–electrolyte interface in the Li-ion battery. Electrochimica Acta200450(2–3): 397–403 

[14]

Doh C HLee  J HLee  D JJin  B SMoon  S I. The quantitative analyses of the dissolved manganese in the electrolyte of  Li/LiMn2O4 cell using by ion chromatography. Bulletin of the Korean Chemical Society200930(10): 4–7

[15]

Demeaux JCaillon-Caravanier  MGaliano H Lemordant D Claude-Montigny B . LiNi0.4Mn1.6O4/electrolyte and carbon black/electrolyte high voltage interfaces: to evidence the chemical and electronic contributions of the solvent on the cathode-electrolyte interface formation. ECS Transactions201241(31): 65–78

[16]

Gulbinska M K . Catalytic materials and processes in secondary lithium-ion batteries. New & Future Developments in Catalysis2013: 479–498

[17]

Jow R TXu  KBorodin O Ue M. Electrolytes for Lithium and Lithium-ion Batteries. New York: Springer,  2014

[18]

Amine KTukamoto  HYasuda H Fujita Y . Preparation and electrochemical investigation of LiMn2−xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries. Journal of Power Sources199768(2): 604–608

[19]

Banov BTodorov  YTrifonova A Momchilov A Manev V . LiMnCoO4 cathode with enhanced cycleability. Journal of Power Sources199768(2): 578–581

[20]

Gummow R Jde Kock  AThackeray M M . Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics199469(1): 59–67 

[21]

Myung S TKomaba  SKumagai N . Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the Eemulsion drying method. Journal of the Electrochemical Society2001148(5): A482–A489

[22]

Bhaskar AMikhailova  DKiziltas-Yavuz N Nikolowski K Oswald S Bramnik N N Ehrenberg H. 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Progress in Solid State Chemistry201442(4): 128–148 

[23]

Chen ZQin  YAmine K Sun Y K . Role of surface coating on cathode materials for lithium-ion batteries. Journal of Materials Chemistry201020(36): 7606–7612

[24]

Li CZhang  H PFu  L JLiu  HWu Y P Rahmb E Holze R Wu H Q . Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta200651(19): 3872–3883 

[25]

Sahan HGoktepe  HPatat S . A novel method to improve the electrochemical performance of LiMn2O4 cathode active material by CaCO3 surface coating. Journal of Materials Science and Technology201127(5): 415–420 

[26]

Wu H CSu  C YShieh  D TYang  M HWu  N L. Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive. Electrochemical and Solid-State Letters20069(12): A537 

[27]

Eom J YJung  I HLee  J H. Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries. Journal of Power Sources2011196(22): 9810–9814

[28]

Ogawa TMiyano  MSuzuki Y Suzuki A Tsuboi H Hatakeyama N Endou A Takaba H Miyamoto A . A theoretical study on initial processes of Li-ion transport at the electrolyte/cathode interface: a quantum chemical molecular dynamics approach. Japanese Journal of Applied Physics201049(4): 04DP11–04DP11–6 

[29]

Tasaki K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. Journal of Physical Chemistry B2005109(7): 2920–2933 

[30]

Xing LLi  WWang C Gu FXu  MTan C Yi J. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. Journal of Physical Chemistry B2009113(52): 16596–16602

[31]

Leung K. First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4 (100) surfaces. Journal of Physical Chemistry C2012116(18): 9852–9861

[32]

Chenoweth Kvan Duin  A C TPersson  PCheng M J Oxgaard J Goddard W A  III. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry A2008112(37): 14645–14654

[33]

Chenoweth Kvan Duin  A C TGoddard  W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A2008112(5): 1040–1053

[34]

Bedrov DSmith  G Dvan Duin  A C T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF. Journal of Physical Chemistry A2012116(11): 2978–2985

[35]

Reddivari SLastoskie  C Mvan Duin  A C T. A reactive force field for manganese oxide reduction by methane. Physical Chemistry Chemical Physics, (in press)

[36]

Reddivari S. Electrode-electrolyte interface layers in lithium ion batteries using reavtive force field based molecular dynamics. Dissertation for the Doctoral Degree. Ann Arbor: University of Michigan, 2016

[37]

Borodin OSmith  G D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. Journal of Physical Chemistry B2009113(6): 1763–1776 

[38]

Martínez LAndrade  RBirgin E G Martinez J M . PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry200930(13): 2157–2164

[39]

Plimpton S. Fast parallel algorithms for short-range molecular dynamics.  Journal of Computational Physics, 1993117(1): 1–19

[40]

Eriksson TAndersson  A MBishop  A GGejke  CGustafsson T Thomas J O . Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes. Journal of the Electrochemical Society2002149(1): A69–A78 

[41]

Aurbach DMarkovsky  BSalitra G Markevich E Talyossef Y Koltypin M Nazar L Ellis B Kovacheva D . Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources2007165(2): 491–499 

[42]

Matsui MDokko  KKanamura K . Dynamic behavior of surface film on LiCoO2 thin film electrode. Journal of Power Sources2008177(1): 184–193 

[43]

Aurbach DEin-Ely  YZaban A . The surface chemistry of lithium electrodes in alkyl carbonate solutions. Journal of the Electrochemical Society1994141(1): L1–L3 

[44]

Carroll K JQian  DFell C Calvin S Veith G M Chi MBaggetto  LMeng Y S . Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Physical Chemistry Chemical Physics Pccp201315(26): 11128–11138

[45]

Aurbach DZaban  AGofer Y Ely Y E Weissman I Chusid O Abramson O . Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources199554(1): 76–84 

[46]

Lux S FLucas  I TPollak  EPasserini S Winter M Kostecki R . The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochemistry Communications201214(1): 47–50 

[47]

Simmen FHintennach  AHorisberger M LippertTNovák  PSchneider C W Wokaun A . Aspects of the surface layer formation on Li1+xMn2O4−δ during electrochemical cycling. Journal of the Electrochemical Society2010157(9): A1026

[48]

Wang EOfer  DBowden W Iltchev N Moses R Brandt K . Stability of lithium ion spinel cells. III. improved life of charged cells. Journal of the Electrochemical Society2000147(11): 4023–4028

[49]

Wang RLi  XWang Z Guo H. Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive. Journal of Solid State Electrochemistry201620(1): 19–28

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (409KB)

3581

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/