Surface frustrated Lewis pairs in perovskite enhance photocatalytic non-oxidative conversion of ethane

Wei Sun , Shenghua Wang

Front. Energy ›› 2025, Vol. 19 ›› Issue (3) : 413 -416.

PDF (1965KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (3) : 413 -416. DOI: 10.1007/s11708-025-0982-8
COMMENTS

Surface frustrated Lewis pairs in perovskite enhance photocatalytic non-oxidative conversion of ethane

Author information +
History +
PDF (1965KB)

Graphical abstract

Cite this article

Download citation ▾
Wei Sun, Shenghua Wang. Surface frustrated Lewis pairs in perovskite enhance photocatalytic non-oxidative conversion of ethane. Front. Energy, 2025, 19(3): 413-416 DOI:10.1007/s11708-025-0982-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song R, Zhao G, Restrepo-Flórez J M. . Ethylene production via photocatalytic dehydrogenation of ethane using LaMn1−xCuxO3. Nature Energy, 2024, 9(6): 750–760

[2]

Welch G C, Cabrera L, Chase P A. . Tuning Lewis acidity using the reactivity of “frustrated Lewis pairs”: Facile formation of phosphine-boranes and cationic phosphonium-boranes. Dalton Transactions, 2007, (31): 3407–3414

[3]

Ghuman K K, Wood T E, Hoch L B. . Illuminating CO2 reduction on frustrated Lewis pair surfaces: Investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3−x(OH)y. Physical Chemistry Chemical Physics, 2015, 17(22): 14623–14635

[4]

Yan X, Gao B, Zheng X. . Cooperatively tailored surface frustrated Lewis pairs and N-doping on CeO2 for photocatalytic CO2 reduction to high-value hydrocarbon products. Applied Catalysis B: Environmental, 2024, 343: 123484

[5]

Pu Y, Luo Y, Wei X. . Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Applied Catalysis B: Environmental, 2019, 254: 580–586

[6]

Tian X R, Jiang X L, Hou S L. . Selectively regulating Lewis acid-base sites in metal–organic frameworks for achieving turn-on/off of the catalytic activity in different CO2 reactions. Angewandte Chemie International Edition, 2022, 61(18): e202200123

[7]

Huang Z Q, Su X, Yu X Y. . Theoretical perspective on the design of surface frustrated Lewis pairs for small-molecule activation. Journal of Physical Chemistry Letters, 2024, 15(20): 5436–5444

[8]

Li M, Wang H, Yang Z. . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni–Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2024, 110199

[9]

Yu X Y, Huang Z Q, Ban T. . Finding natural, dense, and stable frustrated Lewis pairs on wurtzite crystal surfaces for small-molecule activation. Angewandte Chemie International Edition, 2024, 63(23): e202405405

[10]

Chen W, Han J, Wei Y. . Frustrated lewis pair in zeolite cages for alkane activations. Angewandte Chemie International Edition, 2022, 61(15): e202116269

[11]

Huang Z Q, Zhang T, Chang C R. . Dynamic frustrated Lwis pairs on ceria for direct nonoxidative coupling of methane. ACS Catalysis, 2019, 9(6): 5523–5536

[12]

Ma J, Zhang Q, Chen Z. . Design of frustrated Lewis pair in defective TiO2 for photocatalytic non-oxidative methane coupling. Chem Catalysis, 2022, 2(7): 1775–1792

[13]

Ryan M F, Fiedler A, Schroeder D. . Radical-like behavior of manganese oxide cation in its gas-phase reactions with dihydrogen and alkanes. Journal of the American Chemical Society, 1995, 117(7): 2033–2040

[14]

Ozin G. Accelerated optochemical engineering solutions to CO2 photocatalysis for a sustainable future. Matter, 2022, 5(9): 2594–2614

[15]

Sun W, Cao X E. Photothermal CO2 catalysis: Fom catalyst discovery to reactor design. Chem Catalysis, 2022, 2(2): 215–217

[16]

Wang S, Tountas A A, Pan W. . CO2 footprint of thermal versus photothermal CO2 catalysis. Small, 2021, 17(48): 2007025

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1965KB)

6731

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/