Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection
Received date: 25 Aug 2013
Accepted date: 10 Dec 2013
Published date: 01 Apr 2014
Copyright
Toxoplasma gondii is an intracellular parasite involved in the etiology of various behavioral and hormonal alterations in humans and rodents. Various mechanisms, including induction changes of testosterone production, have been proposed in the etiology of behavioral alterations during T. gondii infection. However, controversy remains about the effects of T. gondii infection on testosterone production; in some studies, increased levels of testosterone were reported, whereas other studies reported decreased levels. This is a significant point, because testosterone has been shown to play important roles in various processes, from reproduction to fear and behavior. This contradiction seems to indicate that different factors—primarily parasite strains and host variations—have diverse effects on the intensity of T. gondii infection, which consequently has diverse effects on testosterone production and behavioral alterations. This paper reviews the role of parasite strains, host variations, and intensity of T. gondii infection on behavioral alterations and testosterone production, as well as the role of testosterone in the etiology of these alterations during toxoplasmosis.
Amir ABDOLI . Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection[J]. Frontiers in Biology, 2014 , 9(2) : 151 -160 . DOI: 10.1007/s11515-014-1291-5
1 |
AbdoliA (2013). Toxoplasma gondii and neuropsychiatric diseases: strain hypothesis. Neurol Sci, 34(9): 1697–1698
|
2 |
AbdoliA, DalimiA, ArbabiM, GhaffarifarF (2014). Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med,doi: 10.3109/14767058.2013.858685
|
3 |
AbdoliA, DalimiA, MovahedinM (2012). Impaired reproductive function of male rats infected with Toxoplasma gondii. Andrologia, 44(Suppl 1): 679–687
|
4 |
AchermannJ C, JamesonJ L (1999). Fertility and infertility: genetic contributions from the hypothalamic-pituitary-gonadal axis. Mol Endocrinol, 13(6): 812–818
|
5 |
AikeyJ L, NybyJ G, AnmuthD M, JamesP J (2002). Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav, 42(4): 448–460
|
6 |
AlonsoR, ChaudieuI, DiorioJ, KrishnamurthyA, QuirionR, BoksaP (1993). Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem, 61(4): 1284–1290
|
7 |
ArantesT P, LopesW D, FerreiraR M, PieroniJ S, PintoV M, SakamotoC A, CostaA J (2009). Toxoplasma gondii: evidence for the transmission by semen in dogs. Exp Parasitol, 123(2): 190–194
|
8 |
BerdoyM, WebsterJ P, MacdonaldD W (1995). Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology, 111(Pt 4): 403–409
|
9 |
BerdoyM, WebsterJ P, MacdonaldD W (2000). Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci, 267(1452): 1591–1594
|
10 |
BoothA, GrangerD A, MazurA, KivlighanK T (2006). Testosterone and social behavior. Soc Forces, 85(1): 167–191
|
11 |
ChoksiN Y, JahnkeG D, St HilaireC, ShelbyM (2003). Role of thyroid hormones in human and laboratory animal reproductive health. Birth Defects Res B Dev Reprod Toxicol, 68(6): 479–491
|
12 |
CoxR M, John‐AlderH B (2007). Increased mite parasitism as a cost of testosterone in male striped plateau lizards Sceloporus virgatus. Funct Ecol, 21(2): 327–334
|
13 |
DalimiA, AbdoliA (2012). Latent toxoplasmosis and human. Iran J Parasitol, 7(1): 1–17
|
14 |
DalimiA, AbdoliA (2013). Toxoplasma gondii and male reproduction impairment: a new aspect of toxoplasmosis research. Jundishapur J Microbiol, 6(8): e7184
|
15 |
DardéM L (2008). Toxoplasma gondii, “new” genotypes and virulence. Parasite, 15(3): 366–371
|
16 |
DassS A, VasudevanA, DuttaD, SohL J, SapolskyR M, VyasA (2011). Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS ONE, 6(11): e27229
|
17 |
de MoraesE P, BatistaA M, FariaE B, FreireR L, FreitasA C, SilvaM A, BragaV A, MotaR A (2010). Experimental infection by Toxoplasma gondii using contaminated semen containing different doses of tachyzoites in sheep. Vet Parasitol, 170(3–4): 318–322
|
18 |
DominguezJ M, HullE M (2005). Dopamine, the medial preoptic area, and male sexual behavior. Physiol Behav, 86(3): 356–368
|
19 |
DubeyJ P, FerreiraL R, MartinsJ, McLeodR (2012). Oral oocyst-induced mouse model of toxoplasmosis: effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality. Parasitology, 139(1): 1–13
|
20 |
DubeyJ P, FrenkelJ K (1998). Toxoplasmosis of rats: a review, with considerations of their value as an animal model and their possible role in epidemiology. Vet Parasitol, 77(1): 1–32
|
21 |
EiseneggerC, HaushoferJ, FehrE (2011). The role of testosterone in social interaction. Trends Cogn Sci, 15(6): 263–271
|
22 |
FabianiS, PintoB, BruschiF (2013). Toxoplasmosis and neuropsychiatric diseases: can serological studies establish a clear relationship? Neurol Sci, 34(4): 417–425
|
23 |
FlegrJ (2007). Effects of toxoplasma on human behavior. Schizophr Bull, 33(3): 757–760
|
24 |
FlegrJ (2010). Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol (Praha), 57(2): 81–87
|
25 |
FlegrJ (2013a). Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol, 216(Pt 1): 127–133
|
26 |
FlegrJ (2013b). How and why Toxoplasma makes us crazy. Trends Parasitol, 29(4): 156–163
|
27 |
FlegrJ, HruskovýM, HodnáZ, NovotnáM, HanusováJ (2005). Body height, body mass index, waist-hip ratio, fluctuating asymmetry and second to fourth digit ratio in subjects with latent toxoplasmosis. Parasitology, 130(Pt 6): 621–628
|
28 |
FlegrJ, LindováJ, KodymP (2008a). Sex-dependent toxoplasmosis-associated differences in testosterone concentration in humans. Parasitology, 135(4): 427–431
|
29 |
FlegrJ, LindováJ, PivoñkováV, HavlícekJ (2008b). Brief Communication: Latent toxoplasmosis and salivary testosterone concentration—important confounding factors in second to fourth digit ratio studies. Am J Phys Anthropol, 137(4): 479–484
|
30 |
FlegrJ, NovotnáM, LindováJ, HavlícekJ (2008). Neurophysiological effect of the Rh factor.Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuro Endocrinol Lett, 29(4): 475–481
|
31 |
GaskellE A, SmithJ E, PinneyJ W, WestheadD R, McConkeyG A (2009). A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS ONE, 4(3): e4801
|
32 |
GatkowskaJ, WieczorekM, DziadekB, DzitkoK, DlugonskaH (2013). Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Exp Parasitol, 133(1): 1–7
|
33 |
GrearD A, PerkinsS E, HudsonP J (2009). Does elevated testosterone result in increased exposure and transmission of parasites? Ecol Lett, 12(6): 528–537
|
34 |
GroërMW, YolkenRH, XiaoJC, BecksteadJW, FuchsD, MohapatraSS, SeyfangA, PostolacheTT (2011). Prenatal depression and anxiety in Toxoplasma gondii-positive women. Am J Obstet Gynecol, 204:433.e1–7
|
35 |
HayJ, AitkenP P, GrahamD I (1984). Toxoplasma infection and response to novelty in mice. Z Parasitenkd, 70(5): 575–588
|
36 |
HayJ, HutchisonW M, AitkenP P, GrahamD I (1983). The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Ann Trop Med Parasitol, 77(5): 483–495
|
37 |
HermansE J, PutmanP, BaasJ M, KoppeschaarH P, van HonkJ (2006). A single administration of testosterone reduces fear-potentiated startle in humans. Biol Psychiatry, 59(9): 872–874
|
38 |
HermesG, AjiokaJ W, KellyK A, MuiE, RobertsF, KaszaK, MayrT, KirisitsM J, WollmannR, FergusonD J, RobertsC W, HwangJ H, TrendlerT, KennanR P, SuzukiY, ReardonC, HickeyW F, ChenL, McLeodR (2008). Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation, 5(1): 48
|
39 |
HillR D, GouffonJ S, SaxtonA M, SuC (2012). Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun, 80(3): 968–974
|
40 |
HodkováH, KodymP, FlegrJ (2007b). Poorer results of mice with latent toxoplasmosis in learning tests: impaired learning processes or the novelty discrimination mechanism? Parasitology, 134(Pt 10): 1329–1337
|
41 |
HodkováH, KolbekováP, SkallováA, LindováJ, FlegrJ (2007a). Higher perceived dominance in Toxoplasma infected men—a new evidence for role of increased level of testosterone in toxoplasmosis-associated changes in human behavior. Neuro Endocrinol Lett, 28(2): 110–114
|
42 |
HönekoppJ, BartholdtL, BeierL, LiebertA (2007). Second to fourth digit length ratio (2D:4D) and adult sex hormone levels: new data and a meta-analytic review. Psychoneuroendocrinology, 32(4): 313–321
|
43 |
HughesV L, RandolphS E (2001). Testosterone increases the transmission potential of tick-borne parasites. Parasitology, 123(Pt 4): 365–371
|
44 |
HullE M, DuJ, LorrainD S, MatuszewichL (1995). Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci, 15(11): 7465–7471
|
45 |
HullE M, DuJ, LorrainD S, MatuszewichL (1997). Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull, 44(4): 327–333
|
46 |
HullE M, MuschampJ W, SatoS (2004). Dopamine and serotonin: influences on male sexual behavior. Physiol Behav, 83(2): 291–307
|
47 |
HutchisonW M, AitkenP P, WellsW P (1980). Chronic Toxoplasma infections and familiarity-novelty discrimination in the mouse. Ann Trop Med Parasitol, 74(2): 145–150
|
48 |
InnesE A (1997). Toxoplasmosis: comparative species susceptibility and host immune response. Comp Immunol Microbiol Infect Dis, 20(2): 131–138
|
49 |
JamesW H (2008). Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. J Endocrinol, 198(1): 3–15
|
50 |
JamesW H (2010). Potential solutions to problems posed by the offspring sex ratios of people with parasitic and viral infections. Folia Parasitol (Praha), 57(2): 114–120
|
51 |
KaňkováS, KodymP, FlegrJ (2011). Direct evidence of Toxoplasma-induced changes in serum testosterone in mice. Exp Parasitol, 128(3): 181–183
|
52 |
KaňkováS, KodymP, FryntaD, VavrinováR, KubenaA, FlegrJ (2007b). Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology, 134(Pt 12): 1709–1717
|
53 |
KaňkováŠ, SulcJ, FlegrJ (2010). Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology, 137(12): 1773–1779
|
54 |
KankováŠ, SulcJ, NouzováK, FajfrlíkK, FryntaD, FlegrJ (2007a). Women infected with parasite Toxoplasma have more sons. Naturwissenschaften, 94(2): 122–127
|
55 |
KannanG, MoldovanK, XiaoJ C, YolkenR H, Jones-BrandoL, PletnikovM V (2010). Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol (Praha), 57(2): 151–155
|
56 |
KhakiA, FarzadiL, AhmadiS, GhadamkheirE, KhakiAA, shojaeeS, SahizadehR (2011). Recovery of spermatogenesis by Allium cepa in Toxoplasma gondii infected rats. Afr. J. Pharm. Pharmacol, 5: 903–907
|
57 |
KingJ A, De OliveiraW L, PatelN (2005). Deficits in testosterone facilitate enhanced fear response. Psychoneuroendocrinology, 30(4): 333–340
|
58 |
KleinS L (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev, 24(6): 627–638
|
59 |
LambertonP H, DonnellyC A, WebsterJ P (2008). Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk. Parasitology, 135(10): 1143–1150
|
60 |
LimA, KumarV, Hari DassS A, VyasA (2013). Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol, 22(1): 102–110
|
61 |
LindováJ, KubenaA A, SturcováH, KrivohlaváR, NovotnáM, RubesováA, HavlícekJ, KodymP, FlegrJ (2010). Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol (Praha), 57(2): 136–142
|
62 |
LindováJ, NovotnáM, HavlícekJ, JozífkováE, SkallováA, KolbekováP, HodnýZ, KodymP, FlegrJ (2006). Gender differences in behavioural changes induced by latent toxoplasmosis. Int J Parasitol, 36(14): 1485–1492
|
63 |
LiuS G, QinC, YaoZ J, WangD (2006). Study on the transmission of Toxoplasma gondii by semen in rabbits. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 24(3): 166–170
|
64 |
LopesW D, RodriguezJ D, SouzaF A, dos SantosT R, dos SantosR S, RosaneseW M, LopesW R, SakamotoC A, da CostaA J (2013). Sexual transmission of Toxoplasma gondii in sheep. Vet Parasitol, 195(1–2): 47–56
|
65 |
LutchmayaS, Baron-CohenS, RaggattP, KnickmeyerR, ManningJ T (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum Dev, 77(1–2): 23–28
|
66 |
MackD G, JohnsonJ J, RobertsF, RobertsC W, EstesR G, DavidC, GrumetF C, McLeodR (1999). HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol, 29(9): 1351–1358
|
67 |
McConkeyG A, MartinH L, BristowG C, WebsterJ P (2013). Toxoplasma gondii infection and behaviour- location, location, location? J Exp Biol, 216(Pt 1): 113–119
|
68 |
MillerC M, BoulterN R, IkinR J, SmithN C (2009). The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol, 39(1): 23–39
|
69 |
MitraR, SapolskyR M, VyasA (2013). Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion. Dis Model Mech, 6(2): 516–520
|
70 |
MontoyaE R, TerburgD, BosP A, van HonkJ (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motiv Emot, 36(1): 65–73
|
71 |
MontoyaJ G, LiesenfeldO (2004). Toxoplasmosis. Lancet, 363(9425): 1965–1976
|
72 |
MougeotF, RedpathS M, PiertneyS B (2006). Elevated spring testosterone increases parasite intensity in male red grouse. Behav Ecol, 17(1): 117–125
|
73 |
MuehlenbeinM P, BribiescasR G (2005). Testosterone-mediated immune functions and male life histories. Am J Hum Biol, 17(5): 527–558
|
74 |
Nava-CastroK, Hernández-BelloR, Muñiz-HernándezS, Camacho-ArroyoI, Morales-MontorJ (2012). Sex steroids, immune system, and parasitic infections: facts and hypotheses. Ann N Y Acad Sci, 1262(1): 16–26
|
75 |
NovotnáM, HavlícekJ, SmithA P, KolbekováP, SkallováA, KloseJ, GasováZ, PísackaM, SechovskáM, FlegrJ (2008). Toxoplasma and reaction time: role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology, 135(11): 1253–1261
|
76 |
OktenliC, DoganciL, OzgurtasT, ArazR E, TanyukselM, MusabakU, SanisogluS Y, YesilovaZ, ErbilM K, InalA (2004). Transient hypogonadotrophic hypogonadism in males with acute toxoplasmosis: suppressive effect of interleukin-1 beta on the secretion of GnRH. Hum Reprod, 19(4): 859–866
|
77 |
PetittoJ M, McCarthyD B, RinkerC M, HuangZ, GettyT (1997). Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by species-specific interleukin-2. J Neuroimmunol, 73(1–2): 183–190
|
78 |
PrandovszkyE, GaskellE, MartinH, DubeyJ P, WebsterJ P, McConkeyG A (2011). The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE, 6(9): e23866
|
79 |
PrastH, PhilippuA (2001). Nitric oxide as modulator of neuronal function. Prog Neurobiol, 64(1): 51–68
|
80 |
Robert-GangneuxF, DardéM L (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev, 25(2): 264–296
|
81 |
RobertsC W, WalkerW, AlexanderJ (2001). Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev, 14(3): 476–488
|
82 |
SchwarczR, HunterC A (2007). Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid?Schizophr Bull, 33(3): 652–653
|
83 |
ShirbazouS, AbasianL, MeymandF T (2011). Effects of Toxoplasma gondii infection on plasma testosterone and cortisol level and stress index on patients referred to Sina hospital, Tehran. Jundishapur J Microbiol, 4: 167–173
|
84 |
SkallováA, KodymP, FryntaD, FlegrJ (2006). The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology, 133(Pt 5): 525–535
|
85 |
SohL J, VasudevanA, VyasA (2013). Infection with Toxoplasma gondii does not elicit predator aversion in male mice nor increase their attractiveness in terms of mate choice. Parasitol Res, 112(9): 3373–3378
|
86 |
StahlW, DiasJ A, TurekG (1985). Hypothalamic-adenohypophyseal origin of reproductive failure in mice following chronic infection with Toxoplasma gondii. Proc Soc Exp Biol Med, 178(2): 246–249
|
87 |
StahlW, DiasJ A, TurekG, KanedaY (1995). Etiology of ovarian dysfunction in chronic murine toxoplasmosis. Parasitol Res, 81(2): 114–120
|
88 |
StahlW, KanedaY (1998a). Impaired thyroid function in murine toxoplasmosis. Parasitology, 117(Pt 3): 217–222
|
89 |
StahlW, KanedaY (1998b). Aetiology of thyroidal dysfunction in murine toxoplasmosis. Parasitology, 117(Pt 3): 223–227
|
90 |
StahlW, KanedaY, NoguchiT (1994). Reproductive failure in mice chronically infected with Toxoplasma gondii. Parasitol Res, 80(1): 22–28
|
91 |
StibbsH H (1985). Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol, 79(2): 153–157
|
92 |
StutzA, KesslerH, KaschelM E, MeissnerM, DalpkeA H (2012). Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii. Immunobiology, 217(1): 28–36
|
93 |
SullivanW J Jr, JeffersV (2012). Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev, 36(3): 717–733
|
94 |
SuzukiY, WongS Y, GrumetF C, FesselJ, MontoyaJ G, ZolopaA R, PortmoreA, Schumacher-PerdreauF, SchrappeM, KöppenS, RufB, BrownB W, RemingtonJ S (1996). Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients. J Infect Dis, 173(1): 265–268
|
95 |
TenterA M, HeckerothA R, WeissL M (2000). Toxoplasma gondii: from animals to humans. Int J Parasitol, 30(12–13): 1217–1258
|
96 |
van HonkJ, PeperJ S, SchutterD J (2005). Testosterone reduces unconscious fear but not consciously experienced anxiety: implications for the disorders of fear and anxiety. Biol Psychiatry, 58(3): 218–225
|
97 |
VyasA (2013). Parasite-augmented mate choice and reduction in innate fear in rats infected by Toxoplasma gondii. J Exp Biol, 216(Pt 1): 120–126
|
98 |
VyasA, KimS K, GiacominiN, BoothroydJ C, SapolskyR M (2007). Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA, 104(15): 6442–6447
|
99 |
WagnerM S, WajnerS M, MaiaA L (2008). The role of thyroid hormone in testicular development and function. J Endocrinol, 199(3): 351–365
|
100 |
WanderleyF S, PortoW J, CâmaraD R, da CruzN L, FeitosaB C, FreireR L, de MoraesE P, MotaR A (2013). Experimental vaginal infection of goats with semen contaminated with the “CPG” strain of Toxoplasma gondii. J Parasitol, 99(4): 610–613
|
101 |
WebsterJ P (1994). The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology, 109(Pt 5): 583–589
|
102 |
WebsterJ P (2007). The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull, 33(3): 752–756
|
103 |
WebsterJ P, KaushikM, BristowG C, McConkeyG A (2013). Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol, 216(Pt 1): 99–112
|
104 |
WestA R, GallowayM P, GraceA A (2002). Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse, 44(4): 227–245
|
105 |
WittingP A (1979). Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice. Z Parasitenkd, 61(1): 29–51
|
106 |
WorthA R, LymberyA J, ThompsonR C (2013). Adaptive host manipulation by Toxoplasma gondii: fact or fiction? Trends Parasitol, 29(4): 150–155
|
107 |
XiaoJ, BukaS L, CannonT D, SuzukiY, ViscidiR P, TorreyE F, YolkenR H (2009). Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect, 11(13): 1011–1018
|
108 |
XiaoJ, Jones-BrandoL, TalbotC C Jr, YolkenR H (2011). Differential effects of three canonical Toxoplasma strains on gene expression in human neuroepithelial cells. Infect Immun, 79(3): 1363–1373
|
109 |
XiaoJ, KannanG, Jones-BrandoL, BrannockC, KrasnovaI N, CadetJ L, PletnikovM, YolkenR H (2012). Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience, 206: 39–48
|
110 |
XiaoJ, LiY, Jones-BrandoL, YolkenR H (2013). Abnormalities of neurotransmitter and neuropeptide systems in human neuroepithelioma cells infected by three Toxoplasma strains. J Neural Transm, 120(12): 1631–1639
|
111 |
ZalcmanS, Green-JohnsonJ M, MurrayL, NanceD M, DyckD, AnismanH, GreenbergA H (1994). Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and-6. Brain Res, 643(1–2): 40–49
|
112 |
ZghairKH, AL-QadhiBN, MahmoodSH (2013). The effect of toxoplasmosis on the level of some sex hormones in males blood donors in Baghdad. J Parasit Dis. doi: 10.1007/s12639-013-0382-6
|
/
〈 | 〉 |