Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection

Amir ABDOLI

PDF(202 KB)
PDF(202 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (2) : 151-160. DOI: 10.1007/s11515-014-1291-5
REVIEW
REVIEW

Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection

Author information +
History +

Abstract

Toxoplasma gondii is an intracellular parasite involved in the etiology of various behavioral and hormonal alterations in humans and rodents. Various mechanisms, including induction changes of testosterone production, have been proposed in the etiology of behavioral alterations during T. gondii infection. However, controversy remains about the effects of T. gondii infection on testosterone production; in some studies, increased levels of testosterone were reported, whereas other studies reported decreased levels. This is a significant point, because testosterone has been shown to play important roles in various processes, from reproduction to fear and behavior. This contradiction seems to indicate that different factors—primarily parasite strains and host variations—have diverse effects on the intensity of T. gondii infection, which consequently has diverse effects on testosterone production and behavioral alterations. This paper reviews the role of parasite strains, host variations, and intensity of T. gondii infection on behavioral alterations and testosterone production, as well as the role of testosterone in the etiology of these alterations during toxoplasmosis.

Keywords

Toxoplasma gondii / testosterone / behavior manipulation / parasite strain / host variations / intensity of infection / neurologic and psychiatric disorders

Cite this article

Download citation ▾
Amir ABDOLI. Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection. Front. Biol., 2014, 9(2): 151‒160 https://doi.org/10.1007/s11515-014-1291-5

References

[1]
AbdoliA (2013). Toxoplasma gondii and neuropsychiatric diseases: strain hypothesis. Neurol Sci, 34(9): 1697–1698
CrossRef Pubmed Google scholar
[2]
AbdoliA, DalimiA, ArbabiM, GhaffarifarF (2014). Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med,doi: 10.3109/14767058.2013.858685
[3]
AbdoliA, DalimiA, MovahedinM (2012). Impaired reproductive function of male rats infected with Toxoplasma gondii. Andrologia, 44(Suppl 1): 679–687
CrossRef Pubmed Google scholar
[4]
AchermannJ C, JamesonJ L (1999). Fertility and infertility: genetic contributions from the hypothalamic-pituitary-gonadal axis. Mol Endocrinol, 13(6): 812–818
CrossRef Pubmed Google scholar
[5]
AikeyJ L, NybyJ G, AnmuthD M, JamesP J (2002). Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav, 42(4): 448–460
CrossRef Pubmed Google scholar
[6]
AlonsoR, ChaudieuI, DiorioJ, KrishnamurthyA, QuirionR, BoksaP (1993). Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem, 61(4): 1284–1290
CrossRef Pubmed Google scholar
[7]
ArantesT P, LopesW D, FerreiraR M, PieroniJ S, PintoV M, SakamotoC A, CostaA J (2009). Toxoplasma gondii: evidence for the transmission by semen in dogs. Exp Parasitol, 123(2): 190–194
CrossRef Pubmed Google scholar
[8]
BerdoyM, WebsterJ P, MacdonaldD W (1995). Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology, 111(Pt 4): 403–409
CrossRef Pubmed Google scholar
[9]
BerdoyM, WebsterJ P, MacdonaldD W (2000). Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci, 267(1452): 1591–1594
CrossRef Pubmed Google scholar
[10]
BoothA, GrangerD A, MazurA, KivlighanK T (2006). Testosterone and social behavior. Soc Forces, 85(1): 167–191
CrossRef Google scholar
[11]
ChoksiN Y, JahnkeG D, St HilaireC, ShelbyM (2003). Role of thyroid hormones in human and laboratory animal reproductive health. Birth Defects Res B Dev Reprod Toxicol, 68(6): 479–491
CrossRef Pubmed Google scholar
[12]
CoxR M, John‐AlderH B (2007). Increased mite parasitism as a cost of testosterone in male striped plateau lizards Sceloporus virgatus. Funct Ecol, 21(2): 327–334
CrossRef Google scholar
[13]
DalimiA, AbdoliA (2012). Latent toxoplasmosis and human. Iran J Parasitol, 7(1): 1–17
Pubmed
[14]
DalimiA, AbdoliA (2013). Toxoplasma gondii and male reproduction impairment: a new aspect of toxoplasmosis research. Jundishapur J Microbiol, 6(8): e7184
CrossRef Google scholar
[15]
DardéM L (2008). Toxoplasma gondii, “new” genotypes and virulence. Parasite, 15(3): 366–371
CrossRef Pubmed Google scholar
[16]
DassS A, VasudevanA, DuttaD, SohL J, SapolskyR M, VyasA (2011). Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS ONE, 6(11): e27229
CrossRef Pubmed Google scholar
[17]
de MoraesE P, BatistaA M, FariaE B, FreireR L, FreitasA C, SilvaM A, BragaV A, MotaR A (2010). Experimental infection by Toxoplasma gondii using contaminated semen containing different doses of tachyzoites in sheep. Vet Parasitol, 170(3–4): 318–322
CrossRef Pubmed Google scholar
[18]
DominguezJ M, HullE M (2005). Dopamine, the medial preoptic area, and male sexual behavior. Physiol Behav, 86(3): 356–368
CrossRef Pubmed Google scholar
[19]
DubeyJ P, FerreiraL R, MartinsJ, McLeodR (2012). Oral oocyst-induced mouse model of toxoplasmosis: effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality. Parasitology, 139(1): 1–13
CrossRef Pubmed Google scholar
[20]
DubeyJ P, FrenkelJ K (1998). Toxoplasmosis of rats: a review, with considerations of their value as an animal model and their possible role in epidemiology. Vet Parasitol, 77(1): 1–32
CrossRef Pubmed Google scholar
[21]
EiseneggerC, HaushoferJ, FehrE (2011). The role of testosterone in social interaction. Trends Cogn Sci, 15(6): 263–271
CrossRef Pubmed Google scholar
[22]
FabianiS, PintoB, BruschiF (2013). Toxoplasmosis and neuropsychiatric diseases: can serological studies establish a clear relationship? Neurol Sci, 34(4): 417–425
CrossRef Pubmed Google scholar
[23]
FlegrJ (2007). Effects of toxoplasma on human behavior. Schizophr Bull, 33(3): 757–760
CrossRef Pubmed Google scholar
[24]
FlegrJ (2010). Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol (Praha), 57(2): 81–87
Pubmed
[25]
FlegrJ (2013a). Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol, 216(Pt 1): 127–133
CrossRef Pubmed Google scholar
[26]
FlegrJ (2013b). How and why Toxoplasma makes us crazy. Trends Parasitol, 29(4): 156–163
CrossRef Pubmed Google scholar
[27]
FlegrJ, HruskovýM, HodnáZ, NovotnáM, HanusováJ (2005). Body height, body mass index, waist-hip ratio, fluctuating asymmetry and second to fourth digit ratio in subjects with latent toxoplasmosis. Parasitology, 130(Pt 6): 621–628
CrossRef Pubmed Google scholar
[28]
FlegrJ, LindováJ, KodymP (2008a). Sex-dependent toxoplasmosis-associated differences in testosterone concentration in humans. Parasitology, 135(4): 427–431
CrossRef Pubmed Google scholar
[29]
FlegrJ, LindováJ, PivoñkováV, HavlícekJ (2008b). Brief Communication: Latent toxoplasmosis and salivary testosterone concentration—important confounding factors in second to fourth digit ratio studies. Am J Phys Anthropol, 137(4): 479–484
CrossRef Pubmed Google scholar
[30]
FlegrJ, NovotnáM, LindováJ, HavlícekJ (2008). Neurophysiological effect of the Rh factor.Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuro Endocrinol Lett, 29(4): 475–481
Pubmed
[31]
GaskellE A, SmithJ E, PinneyJ W, WestheadD R, McConkeyG A (2009). A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS ONE, 4(3): e4801
CrossRef Pubmed Google scholar
[32]
GatkowskaJ, WieczorekM, DziadekB, DzitkoK, DlugonskaH (2013). Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Exp Parasitol, 133(1): 1–7
CrossRef Pubmed Google scholar
[33]
GrearD A, PerkinsS E, HudsonP J (2009). Does elevated testosterone result in increased exposure and transmission of parasites? Ecol Lett, 12(6): 528–537
CrossRef Pubmed Google scholar
[34]
GroërMW, YolkenRH, XiaoJC, BecksteadJW, FuchsD, MohapatraSS, SeyfangA, PostolacheTT (2011). Prenatal depression and anxiety in Toxoplasma gondii-positive women. Am J Obstet Gynecol, 204:433.e1–7
[35]
HayJ, AitkenP P, GrahamD I (1984). Toxoplasma infection and response to novelty in mice. Z Parasitenkd, 70(5): 575–588
CrossRef Pubmed Google scholar
[36]
HayJ, HutchisonW M, AitkenP P, GrahamD I (1983). The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Ann Trop Med Parasitol, 77(5): 483–495
Pubmed
[37]
HermansE J, PutmanP, BaasJ M, KoppeschaarH P, van HonkJ (2006). A single administration of testosterone reduces fear-potentiated startle in humans. Biol Psychiatry, 59(9): 872–874
CrossRef Pubmed Google scholar
[38]
HermesG, AjiokaJ W, KellyK A, MuiE, RobertsF, KaszaK, MayrT, KirisitsM J, WollmannR, FergusonD J, RobertsC W, HwangJ H, TrendlerT, KennanR P, SuzukiY, ReardonC, HickeyW F, ChenL, McLeodR (2008). Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation, 5(1): 48
CrossRef Pubmed Google scholar
[39]
HillR D, GouffonJ S, SaxtonA M, SuC (2012). Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun, 80(3): 968–974
CrossRef Pubmed Google scholar
[40]
HodkováH, KodymP, FlegrJ (2007b). Poorer results of mice with latent toxoplasmosis in learning tests: impaired learning processes or the novelty discrimination mechanism? Parasitology, 134(Pt 10): 1329–1337
CrossRef Pubmed Google scholar
[41]
HodkováH, KolbekováP, SkallováA, LindováJ, FlegrJ (2007a). Higher perceived dominance in Toxoplasma infected men—a new evidence for role of increased level of testosterone in toxoplasmosis-associated changes in human behavior. Neuro Endocrinol Lett, 28(2): 110–114
Pubmed
[42]
HönekoppJ, BartholdtL, BeierL, LiebertA (2007). Second to fourth digit length ratio (2D:4D) and adult sex hormone levels: new data and a meta-analytic review. Psychoneuroendocrinology, 32(4): 313–321
CrossRef Pubmed Google scholar
[43]
HughesV L, RandolphS E (2001). Testosterone increases the transmission potential of tick-borne parasites. Parasitology, 123(Pt 4): 365–371
CrossRef Pubmed Google scholar
[44]
HullE M, DuJ, LorrainD S, MatuszewichL (1995). Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci, 15(11): 7465–7471
Pubmed
[45]
HullE M, DuJ, LorrainD S, MatuszewichL (1997). Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull, 44(4): 327–333
CrossRef Pubmed Google scholar
[46]
HullE M, MuschampJ W, SatoS (2004). Dopamine and serotonin: influences on male sexual behavior. Physiol Behav, 83(2): 291–307
Pubmed
[47]
HutchisonW M, AitkenP P, WellsW P (1980). Chronic Toxoplasma infections and familiarity-novelty discrimination in the mouse. Ann Trop Med Parasitol, 74(2): 145–150
Pubmed
[48]
InnesE A (1997). Toxoplasmosis: comparative species susceptibility and host immune response. Comp Immunol Microbiol Infect Dis, 20(2): 131–138
CrossRef Pubmed Google scholar
[49]
JamesW H (2008). Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. J Endocrinol, 198(1): 3–15
CrossRef Pubmed Google scholar
[50]
JamesW H (2010). Potential solutions to problems posed by the offspring sex ratios of people with parasitic and viral infections. Folia Parasitol (Praha), 57(2): 114–120
Pubmed
[51]
KaňkováS, KodymP, FlegrJ (2011). Direct evidence of Toxoplasma-induced changes in serum testosterone in mice. Exp Parasitol, 128(3): 181–183
CrossRef Pubmed Google scholar
[52]
KaňkováS, KodymP, FryntaD, VavrinováR, KubenaA, FlegrJ (2007b). Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology, 134(Pt 12): 1709–1717
CrossRef Pubmed Google scholar
[53]
KaňkováŠ, SulcJ, FlegrJ (2010). Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology, 137(12): 1773–1779
CrossRef Pubmed Google scholar
[54]
KankováŠ, SulcJ, NouzováK, FajfrlíkK, FryntaD, FlegrJ (2007a). Women infected with parasite Toxoplasma have more sons. Naturwissenschaften, 94(2): 122–127
CrossRef Pubmed Google scholar
[55]
KannanG, MoldovanK, XiaoJ C, YolkenR H, Jones-BrandoL, PletnikovM V (2010). Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol (Praha), 57(2): 151–155
Pubmed
[56]
KhakiA, FarzadiL, AhmadiS, GhadamkheirE, KhakiAA, shojaeeS, SahizadehR (2011). Recovery of spermatogenesis by Allium cepa in Toxoplasma gondii infected rats. Afr. J. Pharm. Pharmacol, 5: 903–907
[57]
KingJ A, De OliveiraW L, PatelN (2005). Deficits in testosterone facilitate enhanced fear response. Psychoneuroendocrinology, 30(4): 333–340
CrossRef Pubmed Google scholar
[58]
KleinS L (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev, 24(6): 627–638
CrossRef Pubmed Google scholar
[59]
LambertonP H, DonnellyC A, WebsterJ P (2008). Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk. Parasitology, 135(10): 1143–1150
CrossRef Pubmed Google scholar
[60]
LimA, KumarV, Hari DassS A, VyasA (2013). Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol, 22(1): 102–110
CrossRef Pubmed Google scholar
[61]
LindováJ, KubenaA A, SturcováH, KrivohlaváR, NovotnáM, RubesováA, HavlícekJ, KodymP, FlegrJ (2010). Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol (Praha), 57(2): 136–142
Pubmed
[62]
LindováJ, NovotnáM, HavlícekJ, JozífkováE, SkallováA, KolbekováP, HodnýZ, KodymP, FlegrJ (2006). Gender differences in behavioural changes induced by latent toxoplasmosis. Int J Parasitol, 36(14): 1485–1492
CrossRef Pubmed Google scholar
[63]
LiuS G, QinC, YaoZ J, WangD (2006). Study on the transmission of Toxoplasma gondii by semen in rabbits. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 24(3): 166–170
Pubmed
[64]
LopesW D, RodriguezJ D, SouzaF A, dos SantosT R, dos SantosR S, RosaneseW M, LopesW R, SakamotoC A, da CostaA J (2013). Sexual transmission of Toxoplasma gondii in sheep. Vet Parasitol, 195(1–2): 47–56
CrossRef Pubmed Google scholar
[65]
LutchmayaS, Baron-CohenS, RaggattP, KnickmeyerR, ManningJ T (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum Dev, 77(1–2): 23–28
CrossRef Pubmed Google scholar
[66]
MackD G, JohnsonJ J, RobertsF, RobertsC W, EstesR G, DavidC, GrumetF C, McLeodR (1999). HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol, 29(9): 1351–1358
CrossRef Pubmed Google scholar
[67]
McConkeyG A, MartinH L, BristowG C, WebsterJ P (2013). Toxoplasma gondii infection and behaviour- location, location, location? J Exp Biol, 216(Pt 1): 113–119
CrossRef Pubmed Google scholar
[68]
MillerC M, BoulterN R, IkinR J, SmithN C (2009). The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol, 39(1): 23–39
CrossRef Pubmed Google scholar
[69]
MitraR, SapolskyR M, VyasA (2013). Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion. Dis Model Mech, 6(2): 516–520
CrossRef Pubmed Google scholar
[70]
MontoyaE R, TerburgD, BosP A, van HonkJ (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motiv Emot, 36(1): 65–73
CrossRef Pubmed Google scholar
[71]
MontoyaJ G, LiesenfeldO (2004). Toxoplasmosis. Lancet, 363(9425): 1965–1976
CrossRef Pubmed Google scholar
[72]
MougeotF, RedpathS M, PiertneyS B (2006). Elevated spring testosterone increases parasite intensity in male red grouse. Behav Ecol, 17(1): 117–125
CrossRef Google scholar
[73]
MuehlenbeinM P, BribiescasR G (2005). Testosterone-mediated immune functions and male life histories. Am J Hum Biol, 17(5): 527–558
CrossRef Pubmed Google scholar
[74]
Nava-CastroK, Hernández-BelloR, Muñiz-HernándezS, Camacho-ArroyoI, Morales-MontorJ (2012). Sex steroids, immune system, and parasitic infections: facts and hypotheses. Ann N Y Acad Sci, 1262(1): 16–26
CrossRef Pubmed Google scholar
[75]
NovotnáM, HavlícekJ, SmithA P, KolbekováP, SkallováA, KloseJ, GasováZ, PísackaM, SechovskáM, FlegrJ (2008). Toxoplasma and reaction time: role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology, 135(11): 1253–1261
CrossRef Pubmed Google scholar
[76]
OktenliC, DoganciL, OzgurtasT, ArazR E, TanyukselM, MusabakU, SanisogluS Y, YesilovaZ, ErbilM K, InalA (2004). Transient hypogonadotrophic hypogonadism in males with acute toxoplasmosis: suppressive effect of interleukin-1 beta on the secretion of GnRH. Hum Reprod, 19(4): 859–866
CrossRef Pubmed Google scholar
[77]
PetittoJ M, McCarthyD B, RinkerC M, HuangZ, GettyT (1997). Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by species-specific interleukin-2. J Neuroimmunol, 73(1–2): 183–190
CrossRef Pubmed Google scholar
[78]
PrandovszkyE, GaskellE, MartinH, DubeyJ P, WebsterJ P, McConkeyG A (2011). The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE, 6(9): e23866
CrossRef Pubmed Google scholar
[79]
PrastH, PhilippuA (2001). Nitric oxide as modulator of neuronal function. Prog Neurobiol, 64(1): 51–68
CrossRef Pubmed Google scholar
[80]
Robert-GangneuxF, DardéM L (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev, 25(2): 264–296
CrossRef Pubmed Google scholar
[81]
RobertsC W, WalkerW, AlexanderJ (2001). Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev, 14(3): 476–488
CrossRef Pubmed Google scholar
[82]
SchwarczR, HunterC A (2007). Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid?Schizophr Bull, 33(3): 652–653
CrossRef Pubmed Google scholar
[83]
ShirbazouS, AbasianL, MeymandF T (2011). Effects of Toxoplasma gondii infection on plasma testosterone and cortisol level and stress index on patients referred to Sina hospital, Tehran. Jundishapur J Microbiol, 4: 167–173
[84]
SkallováA, KodymP, FryntaD, FlegrJ (2006). The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology, 133(Pt 5): 525–535
CrossRef Pubmed Google scholar
[85]
SohL J, VasudevanA, VyasA (2013). Infection with Toxoplasma gondii does not elicit predator aversion in male mice nor increase their attractiveness in terms of mate choice. Parasitol Res, 112(9): 3373–3378
CrossRef Pubmed Google scholar
[86]
StahlW, DiasJ A, TurekG (1985). Hypothalamic-adenohypophyseal origin of reproductive failure in mice following chronic infection with Toxoplasma gondii. Proc Soc Exp Biol Med, 178(2): 246–249
CrossRef Pubmed Google scholar
[87]
StahlW, DiasJ A, TurekG, KanedaY (1995). Etiology of ovarian dysfunction in chronic murine toxoplasmosis. Parasitol Res, 81(2): 114–120
CrossRef Pubmed Google scholar
[88]
StahlW, KanedaY (1998a). Impaired thyroid function in murine toxoplasmosis. Parasitology, 117(Pt 3): 217–222
CrossRef Pubmed Google scholar
[89]
StahlW, KanedaY (1998b). Aetiology of thyroidal dysfunction in murine toxoplasmosis. Parasitology, 117(Pt 3): 223–227
CrossRef Pubmed Google scholar
[90]
StahlW, KanedaY, NoguchiT (1994). Reproductive failure in mice chronically infected with Toxoplasma gondii. Parasitol Res, 80(1): 22–28
CrossRef Pubmed Google scholar
[91]
StibbsH H (1985). Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol, 79(2): 153–157
Pubmed
[92]
StutzA, KesslerH, KaschelM E, MeissnerM, DalpkeA H (2012). Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii. Immunobiology, 217(1): 28–36
CrossRef Pubmed Google scholar
[93]
SullivanW J Jr, JeffersV (2012). Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev, 36(3): 717–733
CrossRef Pubmed Google scholar
[94]
SuzukiY, WongS Y, GrumetF C, FesselJ, MontoyaJ G, ZolopaA R, PortmoreA, Schumacher-PerdreauF, SchrappeM, KöppenS, RufB, BrownB W, RemingtonJ S (1996). Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients. J Infect Dis, 173(1): 265–268
CrossRef Pubmed Google scholar
[95]
TenterA M, HeckerothA R, WeissL M (2000). Toxoplasma gondii: from animals to humans. Int J Parasitol, 30(12–13): 1217–1258
CrossRef Pubmed Google scholar
[96]
van HonkJ, PeperJ S, SchutterD J (2005). Testosterone reduces unconscious fear but not consciously experienced anxiety: implications for the disorders of fear and anxiety. Biol Psychiatry, 58(3): 218–225
CrossRef Pubmed Google scholar
[97]
VyasA (2013). Parasite-augmented mate choice and reduction in innate fear in rats infected by Toxoplasma gondii. J Exp Biol, 216(Pt 1): 120–126
CrossRef Pubmed Google scholar
[98]
VyasA, KimS K, GiacominiN, BoothroydJ C, SapolskyR M (2007). Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA, 104(15): 6442–6447
CrossRef Pubmed Google scholar
[99]
WagnerM S, WajnerS M, MaiaA L (2008). The role of thyroid hormone in testicular development and function. J Endocrinol, 199(3): 351–365
CrossRef Pubmed Google scholar
[100]
WanderleyF S, PortoW J, CâmaraD R, da CruzN L, FeitosaB C, FreireR L, de MoraesE P, MotaR A (2013). Experimental vaginal infection of goats with semen contaminated with the “CPG” strain of Toxoplasma gondii. J Parasitol, 99(4): 610–613
CrossRef Pubmed Google scholar
[101]
WebsterJ P (1994). The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology, 109(Pt 5): 583–589
CrossRef Pubmed Google scholar
[102]
WebsterJ P (2007). The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull, 33(3): 752–756
CrossRef Pubmed Google scholar
[103]
WebsterJ P, KaushikM, BristowG C, McConkeyG A (2013). Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol, 216(Pt 1): 99–112
CrossRef Pubmed Google scholar
[104]
WestA R, GallowayM P, GraceA A (2002). Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse, 44(4): 227–245
CrossRef Pubmed Google scholar
[105]
WittingP A (1979). Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice. Z Parasitenkd, 61(1): 29–51
CrossRef Pubmed Google scholar
[106]
WorthA R, LymberyA J, ThompsonR C (2013). Adaptive host manipulation by Toxoplasma gondii: fact or fiction? Trends Parasitol, 29(4): 150–155
CrossRef Pubmed Google scholar
[107]
XiaoJ, BukaS L, CannonT D, SuzukiY, ViscidiR P, TorreyE F, YolkenR H (2009). Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect, 11(13): 1011–1018
CrossRef Pubmed Google scholar
[108]
XiaoJ, Jones-BrandoL, TalbotC C Jr, YolkenR H (2011). Differential effects of three canonical Toxoplasma strains on gene expression in human neuroepithelial cells. Infect Immun, 79(3): 1363–1373
CrossRef Pubmed Google scholar
[109]
XiaoJ, KannanG, Jones-BrandoL, BrannockC, KrasnovaI N, CadetJ L, PletnikovM, YolkenR H (2012). Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience, 206: 39–48
CrossRef Pubmed Google scholar
[110]
XiaoJ, LiY, Jones-BrandoL, YolkenR H (2013). Abnormalities of neurotransmitter and neuropeptide systems in human neuroepithelioma cells infected by three Toxoplasma strains. J Neural Transm, 120(12): 1631–1639
CrossRef Pubmed Google scholar
[111]
ZalcmanS, Green-JohnsonJ M, MurrayL, NanceD M, DyckD, AnismanH, GreenbergA H (1994). Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and-6. Brain Res, 643(1–2): 40–49
CrossRef Pubmed Google scholar
[112]
ZghairKH, AL-QadhiBN, MahmoodSH (2013). The effect of toxoplasmosis on the level of some sex hormones in males blood donors in Baghdad. J Parasit Dis. doi: 10.1007/s12639-013-0382-6

Acknowledgments

The author would like to sincerely thank Professor Jaroslav Flegr (Charles University, Prague, Czech Republic) for their excellent comments and helpful suggestions. The author also expresses his sincere thanks to the unknown referees for valuable criticisms and suggestions.
Compliance with ethics guidelines
Amir Abdoli declares that he has no conflict of interest.
ƒThis manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(202 KB)

Accesses

Citations

Detail

Sections
Recommended

/