REVIEW

Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition

  • Caiguo ZHANG ,
  • Guoqi LIU ,
  • Mingxia HUANG
Expand
  • Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA

Received date: 18 Feb 2014

Accepted date: 28 Feb 2014

Published date: 01 Apr 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Ribonucleotide reductase (RNR) supplies cellular deoxyribonucleotide triphosphates (dNTP) pools by converting ribonucleotides to the corresponding deoxy forms using radical-based chemistry. Eukaryotic RNR comprises α and β subunits: α contains the catalytic and allosteric sites; β houses a diferric-tyrosyl radical cofactor (FeIII2-Y•) that is required to initiates nucleotide reduction in α. Cells have evolved multi-layered mechanisms to regulate RNR level and activity in order to maintain the adequate sizes and ratios of their dNTP pools to ensure high-fidelity DNA replication and repair. The central role of RNR in nucleotide metabolism also makes it a proven target of chemotherapeutics. In this review, we discuss recent progress in understanding the function and regulation of eukaryotic RNRs, with a focus on studies revealing the cellular machineries involved in RNR metallocofactor biosynthesis and its implication in RNR-targeting therapeutics.

Cite this article

Caiguo ZHANG , Guoqi LIU , Mingxia HUANG . Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition[J]. Frontiers in Biology, 2014 , 9(2) : 104 -113 . DOI: 10.1007/s11515-014-1302-6

Acknowledgements

This work was supported by National Institutes of Health (CA125574 and GM81393).
Compliance with ethics guidelines
The authors declare no conflict of interest.
This article does not contain any studies with human or animal as subjects performed by any of the authors.
1
AllenJ B, ZhouZ, SiedeW, FriedbergE C, ElledgeS J (1994). The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev, 8(20): 2401–2415

DOI PMID

2
AtkinC L, ThelanderL, ReichardP, LangG (1973). Iron and free radical in ribonucleotide reductase. Exchange of iron and Mössbauer spectroscopy of the protein B2 subunit of the Escherichia coli enzyme. J Biol Chem, 248(21): 7464–7472

PMID

3
AyeY, BrignoleE J, LongM J, ChittuluruJ, DrennanC L, AsturiasF J, StubbeJ (2012a). Clofarabine targets the large subunit (α) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem Biol, 19(7): 799–805

DOI PMID

4
AyeY, LongM J, StubbeJ (2012b). Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J Biol Chem, 287(42): 35768–35778

DOI PMID

5
BarlowT, EliassonR, PlatzA, ReichardP, SjöbergB M (1983). Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc Natl Acad Sci USA, 80(6): 1492–1495

DOI PMID

6
BianchiV, PontisE, ReichardP (1986). Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J Biol Chem, 261(34): 16037–16042

PMID

7
BjörklundS, SkogS, TribukaitB, ThelanderL (1990). S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry, 29(23): 5452–5458

DOI PMID

8
BoehmerP E, LehmanI R (1997). Herpes simplex virus DNA replication. Annu Rev Biochem, 66(1): 347–384

DOI PMID

9
BollingerJ M Jr, EdmondsonD E, HuynhB H, FilleyJ, NortonJ R, StubbeJ (1991). Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. Science, 253(5017): 292–298

DOI PMID

10
BollingerJ M Jr, JiangW, GreenM T, KrebsC (2008). The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Curr Opin Struct Biol, 18(6): 650–657

DOI PMID

11
BollingerJ M Jr, TongW H, RaviN, HuynhB H, EdmondsonD E, StubbeJ A (1995). Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of E. coli ribonucleotide reductase. Methods Enzymol, 258: 278–303

DOI PMID

12
BrockmanR W, ShaddixS, LasterW R Jr, SchabelF M Jr (1970). Inhibition of ribonucleotide reductase, DNA synthesis, and L1210 leukemia by guanazole. Cancer Res, 30(9): 2358–2368

PMID

13
BurrellR A, McClellandS E, EndesfelderD, GrothP, WellerM C, ShaikhN, DomingoE, KanuN, DewhurstS M, GronroosE, ChewS K, RowanA J, SchenkA, ShefferM, HowellM, KschischoM, BehrensA, HelledayT, BartekJ, TomlinsonI P, SwantonC (2013). Replication stress links structural and numerical cancer chromosomal instability. Nature, 494(7438): 492–496

DOI PMID

14
BussJ L, TortiF M, TortiS V (2003). The role of iron chelation in cancer therapy. Curr Med Chem, 10(12): 1021–1034

DOI PMID

15
CairnsR A, HarrisI S, MakT W (2011). Regulation of cancer cell metabolism. Nat Rev Cancer, 11(2): 85–95

DOI PMID

16
CampestreC, AgamennoneM, TortorellaP, PreziusoS, BiasoneA, GavuzzoE, PochettiG, MazzaF, HillerO, TschescheH, ConsalviV, GallinaC (2006). N-Hydroxyurea as zinc binding group in matrix metalloproteinase inhibition: mode of binding in a complex with MMP-8. Bioorg Med Chem Lett, 16(1): 20–24

DOI PMID

17
CerqueiraN M, FernandesP A, RamosM J (2007). Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents. Recent Patents Anticancer Drug Discov, 2(1): 11–29

DOI PMID

18
ChabesA, GeorgievaB, DomkinV, ZhaoX, RothsteinR, ThelanderL (2003a). Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell, 112(3): 391–401

DOI PMID

19
ChabesA, ThelanderL (2003). DNA building blocks at the foundation of better survival. Cell Cycle, 2(3): 171–173

DOI PMID

20
ChabesA L, PflegerC M, KirschnerM W, ThelanderL (2003b). Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA, 100(7): 3925–3929

DOI PMID

21
ChaboutéM E, ClémentB, PhilippsG (2002). S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5′ leader sequence. J Biol Chem, 277(20): 17845–17851

DOI PMID

22
ChaboutéM E, ClémentB, SekineM, PhilippsG, Chaubet-GigotN (2000). Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell, 12(10): 1987–2000

PMID

23
ChastonT B, LovejoyD B, WattsR N, RichardsonD R (2003). Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin Cancer Res, 9(1): 402–414

PMID

24
ChastonT B, RichardsonD R (2003). Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am J Hematol, 73(3): 200–210

DOI PMID

25
ClimentI, SjöbergB M, HuangC Y (1991). Carboxyl-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry, 30(21): 5164–5171

DOI PMID

26
CotruvoJ A Jr, StubbeJ (2010). An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry, 49(6): 1297–1309

DOI PMID

27
CotruvoJ A Jr, StubbeJ (2011). Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem, 80(1): 733–767

DOI PMID

28
CovesJ, ZeghoufM, MacherelD, GuigliarelliB, AssoM, FontecaveM (1997). Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry, 36(19): 5921–5928

DOI PMID

29
D’AngiolellaV, DonatoV, ForresterF M, JeongY T, PellacaniC, KudoY, SarafA, FlorensL, WashburnM P, PaganoM (2012). Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell, 149(5): 1023–1034

DOI PMID

30
DaviesB W, KohanskiM A, SimmonsL A, WinklerJ A, CollinsJ J, WalkerG C (2009). Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell, 36(5): 845–860

DOI PMID

31
DayaniP N, BishopM C, BlackK, ZeltzerP M (2004). Desferoxamine (DFO)—mediated iron chelation: rationale for a novel approach to therapy for brain cancer. J Neurooncol, 67(3): 367–377

DOI PMID

32
DonehowerR C (1992). An overview of the clinical experience with hydroxyurea. Semin Oncol, 19(3 Suppl 9): 11–19

PMID

33
EklundH, UhlinU, FärnegårdhM, LoganD T, NordlundP (2001). Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol, 77(3): 177–268

DOI PMID

34
ElledgeS J, ZhouZ, AllenJ B, NavasT A (1993). DNA damage and cell cycle regulation of ribonucleotide reductase. BioEssays, 15: 333–339

35
EnyedyE A, PrimikM F, KowolC R, ArionV B, KissT, KepplerB K (2011). Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study. Dalton Trans, 40(22): 5895–5905

DOI PMID

36
FanH, VillegasC, HuangA, WrightJ A (1998). The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res, 58(8): 1650–1653

PMID

37
FinchR A, LiuM C, CoryA H, CoryJ G, SartorelliA C (1999). Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): an inhibitor of ribonucleotide reductase with antineoplastic activity. Adv Enzyme Regul, 39(1): 3–12

DOI PMID

38
FishbeinW N, CarboneP P (1963). Hydroxyurea: Mechanism of Action. Science, 142(3595): 1069–1070

DOI PMID

39
FontecaveM, EliassonR, ReichardP (1987). NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem, 262(25): 12325–12331

PMID

40
FontecaveM, EliassonR, ReichardP (1989). Enzymatic regulation of the radical content of the small subunit of Escherichia coli ribonucleotide reductase involving reduction of its redox centers. J Biol Chem, 264(16): 9164–9170

PMID

41
FontecaveM, MulliezE, LoganD T (2002). Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog Nucleic Acid Res Mol Biol, 72: 95–127

DOI PMID

42
GwiltP R, TracewellW G (1998). Pharmacokinetics and pharmacodynamics of hydroxyurea. Clin Pharmacokinet, 34(5): 347–358

DOI PMID

43
HalimiY, DessauM, PollakS, AstT, ErezT, Livnat-LevanonN, KarniolB, HirschJ A, ChamovitzD A (2011). COP9 signalosome subunit 7 from Arabidopsis interacts with and regulates the small subunit of ribonucleotide reductase (RNR2). Plant Mol Biol, 77(1-2): 77–89

DOI PMID

44
HanahanD, WeinbergR A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674

DOI PMID

45
HaoZ, QiaoT, JinX, LiX, GaoJ, FanD (2005). Preparation and characterization of a specific monoclonal antibody against CIAPIN1. Hybridoma (Larchmt), 24(3): 141–145

DOI PMID

46
HarperJ W, ElledgeS J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745

DOI PMID

47
HaunhorstP, HanschmannE M, BräutigamL, StehlingO, HoffmannB, MühlenhoffU, LillR, BerndtC, LilligC H (2013). Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol Biol Cell, 24(12): 1895–1903

DOI PMID

48
HoferA, CronaM, LoganD T, SjöbergB M (2012). DNA building blocks: keeping control of manufacture. Crit Rev Biochem Mol Biol, 47(1): 50–63

DOI PMID

49
HristovaD, WuC H, JiangW, KrebsC, StubbeJ (2008). Importance of the maintenance pathway in the regulation of the activity of Escherichia coli ribonucleotide reductase. Biochemistry, 47(13): 3989–3999

DOI PMID

50
HuC M, YehM T, TsaoN, ChenC W, GaoQ Z, ChangC Y, LeeM H, FangJ M, SheuS Y, LinC J, TsengM C, ChenY J, ChangZ F (2012). Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell, 22(1): 36–50

DOI PMID

51
HuangM, ElledgeS J (1997). Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17(10): 6105–6113

PMID

52
JiangW, YunD, SalehL, BarrE W, XingG, HoffartL M, MaslakM A, KrebsC, BollingerJ M Jr (2007). A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science, 316(5828): 1188–1191

DOI PMID

53
JohnsD G, GaoW Y (1998). Selective depletion of DNA precursors: an evolving strategy for potentiation of dideoxynucleoside activity against human immunodeficiency virus. Biochem Pharmacol, 55(10): 1551–1556

PMID

54
JordanA, ReichardP (1998). Ribonucleotide reductases. Annu Rev Biochem, 67(1): 71–98

DOI PMID

55
KaplanJ, McVey WardD, CrispR J, PhilpottC C (2006). Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta, 1763(7): 646–651

DOI PMID

56
KashlanO B, CoopermanB S (2003). Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry, 42(6): 1696–1706

DOI PMID

57
KeP Y, KuoY Y, HuC M, ChangZ F (2005). Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev, 19(16): 1920–1933

DOI PMID

58
KennedyB J (1992). The evolution of hydroxyurea therapy in chronic myelogenous leukemia. Semin Oncol, 19(3 Suppl 9): 21–26

PMID

59
KolbergM, StrandK R, GraffP, AnderssonK K (2004). Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta, 1699(1-2): 1–34

DOI PMID

60
KumarD, VibergJ, NilssonA K, ChabesA (2010). Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res, 38(12): 3975–3983

DOI PMID

61
KunkelT A, SilberJ R, LoebL A (1982). The mutagenic effect of deoxynucleotide substrate imbalances during DNA synthesis with mammalian DNA polymerases. Mutat Res, 94(2): 413–419

DOI PMID

62
KunosC, RadivoyevitchT, Abdul-KarimF W, FanningJ, AbulafiaO, BonebrakeA J, UshaL (2012). Ribonucleotide reductase inhibition restores platinum-sensitivity in platinum-resistant ovarian cancer: a Gynecologic Oncology Group Study. J Transl Med, 10(1): 79

DOI PMID

63
KuritaJ, NakajimaK (2012). Megalocytiviruses. Viruses, 4(4): 521–538

DOI PMID

64
LassmannG, ThelanderL, GräslundA (1992). EPR stopped-flow studies of the reaction of the tyrosyl radical of protein R2 from ribonucleotide reductase with hydroxyurea. Biochem Biophys Res Commun, 188(2): 879–887

DOI PMID

65
LeeY D, WangJ, StubbeJ, ElledgeS J (2008). Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell, 32(1): 70–80

DOI PMID

66
LillR, HoffmannB, MolikS, PierikA J, RietzschelN, StehlingO, UzarskaM A, WebertH, WilbrechtC, MühlenhoffU (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508

DOI PMID

67
LiuC, PowellK A, MundtK, WuL, CarrA M, CaspariT (2003). Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev, 17(9): 1130–1140

DOI PMID

68
LiuX, ZhouB, XueL, YenF, ChuP, UnF, YenY (2007). Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer, 6(5): 374–381

DOI PMID

69
LoebL A, KunkelT A (1982). Fidelity of DNA synthesis. Annu Rev Biochem, 51(1): 429–457

DOI PMID

70
LoganD T, MulliezE, LarssonK M, BodevinS, AttaM, GarnaudP E, SjobergB M, FontecaveM (2003). A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase. Proc Natl Acad Sci USA, 100(7): 3826–3831

DOI PMID

71
LovejoyD B, RichardsonD R (2003). Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr Med Chem, 10(12): 1035–1049

DOI PMID

72
MadaanK, KaushikD, VermaT (2012). Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther, 12(1): 19–29

DOI PMID

73
MathewsC K (2006). DNA precursor metabolism and genomic stability. FASEB J, 20: 1300–1314

74
MayhewC N, SumpterR, InayatM, CibullM, PhillipsJ D, ElfordH L, GallicchioV S (2005). Combination of inhibitors of lymphocyte activation (hydroxyurea, trimidox, and didox) and reverse transcriptase (didanosine) suppresses development of murine retrovirus-induced lymphoproliferative disease. Antiviral Res, 65(1): 13–22

DOI PMID

75
MinnihanE C, AndoN, BrignoleE J, OlshanskyL, ChittuluruJ, AsturiasF J, DrennanC L, NoceraD G, StubbeJ (2013a). Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proc Natl Acad Sci USA, 110(10): 3835–3840

DOI PMID

76
MinnihanE C, NoceraD G, StubbeJ (2013b). Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res, 46(11): 2524–2535

DOI PMID

77
MiyajimaH, TakahashiY, KamataT, ShimizuH, SakaiN, GitlinJ D (1997). Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol, 41(3): 404–407

DOI PMID

78
MowaM B, WarnerD F, KaplanG, KanaB D, MizrahiV (2009). Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J Bacteriol, 191(3): 985–995

DOI PMID

79
MühlenhoffU, MolikS, GodoyJ R, UzarskaM A, RichterN, SeubertA, ZhangY, StubbeJ, PierrelF, HerreroE, LilligC H, LillR (2010). Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab, 12(4): 373–385

DOI PMID

80
NakanoK, BálintE, AshcroftM, VousdenK H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289

DOI PMID

81
NetzD J, StümpfigM, DoréC, MühlenhoffU, PierikA J, LillR (2010). Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol, 6(10): 758–765

DOI PMID

82
NiidaH, KatsunoY, SengokuM, ShimadaM, YukawaM, IkuraM, IkuraT, KohnoK, ShimaH, SuzukiH, TashiroS, NakanishiM (2010). Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev, 24(4): 333–338

DOI PMID

83
NordlundP, ReichardP (2006). Ribonucleotide reductases. Annu Rev Biochem, 75(1): 681–706

DOI PMID

84
NyholmS, ThelanderL, GräslundA (1993). Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry, 32(43): 11569–11574

DOI PMID

85
OffenbacherA R, VassilievI R, SeyedsayamdostM R, StubbeJ, BarryB A (2009). Redox-linked structural changes in ribonucleotide reductase. J Am Chem Soc, 131(22): 7496–7497

DOI PMID

86
OrmöM, deMaréF, RegnströmK, AbergA, SahlinM, LingJ, LoehrT M, Sanders-LoehrJ, SjöbergB M (1992). Engineering of the iron site in ribonucleotide reductase to a self-hydroxylating monooxygenase. J Biol Chem, 267(13): 8711–8714

PMID

87
OrtigosaA D, HristovaD, PerlsteinD L, ZhangZ, HuangM, StubbeJ (2006). Determination of the in vivo stoichiometry of tyrosyl radical per betabeta’ in Saccharomyces cerevisiae ribonucleotide reductase. Biochemistry, 45(40): 12282–12294

DOI PMID

88
PollycoveM, MaqsoodM (1962). Existence of an erythropoietic labile iron pool in animals. Nature, 194(4824): 152–154

DOI PMID

89
Pujol-CarrionN, BelliG, HerreroE, NoguesA, de la Torre-RuizM A (2006). Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci, 119(Pt 21): 4554–4564

DOI PMID

90
ReeceS Y, HodgkissJ M, StubbeJ, NoceraD G (2006). Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc Lond B Biol Sci, 361(1472): 1351–1364

DOI PMID

91
ReichardP (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem, 57(1): 349–374

DOI PMID

92
ReichardP (1993). From RNA to DNA, why so many ribonucleotide reductases? Science, 260(5115): 1773–1777

DOI PMID

93
RenS, WangR, KomatsuK, Bonaz-KrauseP, ZyrianovY, McKennaC E, CsipkeC, TokesZ A, LienE J (2002). Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem, 45(2): 410–419

DOI PMID

94
RichardsonD R, KalinowskiD S, RichardsonV, SharpeP C, LovejoyD B, IslamM, BernhardtP V (2009). 2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: redox activity, iron complexation and characterization of their antitumor activity. J Med Chem, 52(5): 1459–1470

DOI PMID

95
RofougaranR, VodnalaM, HoferA (2006). Enzymatically active mammalian ribonucleotide reductase exists primarily as an alpha6beta2 octamer. J Biol Chem, 281(38): 27705–27711

DOI PMID

96
RouaultT, KlausnerR (1997). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul, 35: 1–19

DOI PMID

97
SaitoY, ShibayamaH, TanakaH, TanimuraA, MatsumuraI, KanakuraY (2011). PICOT is a molecule which binds to anamorsin. Biochem Biophys Res Commun, 408(2): 329–333

DOI PMID

98
SaldivarJ C, MiumaS, BeneJ, HosseiniS A, ShibataH, SunJ, WheelerL J, MathewsC K, HuebnerK (2012). Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet, 8(11): e1003077

DOI PMID

99
SaloweS, BollingerJ M Jr, AtorM, StubbeJ, McCrakenJ, PeisachJ, SamanoM C, RobinsM J (1993). Alternative model for mechanism-based inhibition of Escherichia coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine 5′-diphosphate. Biochemistry, 32(47): 12749–12760

DOI PMID

100
SanvisensN, de LlanosR, PuigS (2013). Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability. Biomed J, 36: 51–58

101
ScozzafavaA, SupuranC T (2003). Hydroxyurea is a carbonic anhydrase inhibitor. Bioorg Med Chem, 11(10): 2241–2246

DOI PMID

102
ShaoJ, LiuX, ZhuL, YenY (2013). Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets, 17(12): 1423–1437

DOI PMID

103
ShaoJ, ZhouB, Di BilioA J, ZhuL, WangT, QiC, ShihJ, YenY (2006). A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol Cancer Ther, 5(3): 586–592

DOI PMID

104
ShaoJ, ZhouB, ZhuL, QiuW, YuanY C, XiB, YenY (2004). In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res, 64(1): 1–6

DOI PMID

105
ShibayamaH, TakaiE, MatsumuraI, KounoM, MoriiE, KitamuraY, TakedaJ, KanakuraY (2004). Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med, 199(4): 581–592

DOI PMID

106
SjöbergB M, ReichardP (1977). Nature of the free radical in ribonucleotide reductase from Escherichia coli. J Biol Chem, 252(2): 536–541

PMID

107
SongS, PursellZ F, CopelandW C, LongleyM J, KunkelT A, MathewsC K (2005). DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci USA, 102(14): 4990–4995

DOI PMID

108
SouglakosJ, BoukovinasI, TaronM, MendezP, MavroudisD, TripakiM, HatzidakiD, KoutsopoulosA, StathopoulosE, GeorgouliasV, RosellR (2008). Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer, 98(10): 1710–1715

DOI PMID

109
StubbeJ (2003). Di-iron-tyrosyl radical ribonucleotide reductases. Curr Opin Chem Biol, 7(2): 183–188

DOI PMID

110
StubbeJ, CotruvoJ A Jr (2011). Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese? Curr Opin Chem Biol, 15(2): 284–290

DOI PMID

111
StubbeJ, GeJ, YeeC S (2001). The evolution of ribonucleotide reduction revisited. Trends Biochem Sci, 26(2): 93–99

DOI PMID

112
StubbeJ, van Der DonkW A (1998). Protein Radicals in Enzyme Catalysis. Chem Rev, 98(2): 705–762

DOI PMID

113
TanakaH, ArakawaH, YamaguchiT, ShiraishiK, FukudaS, MatsuiK, TakeiY, NakamuraY (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404(6773): 42–49

DOI PMID

114
ThelanderL, GräslundA, ThelanderM (1983). Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem Biophys Res Commun, 110(3): 859–865

DOI PMID

115
WangJ, LohmanG J, StubbeJ (2007). Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases. Proc Natl Acad Sci USA, 104(36): 14324–14329

DOI PMID

116
WhiteM F, DillinghamM S (2012). Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol, 22(1): 94–100

DOI PMID

117
WillingA, FollmannH, AulingG (1988). Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur J Bio, 170: 603–611

118
WuC H, JiangW, KrebsC, StubbeJ (2007). YfaE, a ferredoxin involved in diferric-tyrosyl radical maintenance in Escherichia coli ribonucleotide reductase. Biochemistry, 46(41): 11577–11588

DOI PMID

119
WuX, HuangM (2008). Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol, 28(23): 7156–7167

DOI PMID

120
XueL, ZhouB, LiuX, QiuW, JinZ, YenY (2003). Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res, 63(5): 980–986

PMID

121
YangF D, SpanevelloR A, CelikerI, HirschmannR, RubinH, CoopermanB S (1990). The carboxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits enzyme activity and can be used to purify the R1 subunit. FEBS Lett, 272(1-2): 61–64

DOI PMID

122
YaoR, ZhangZ, AnX, BucciB, PerlsteinD L, StubbeJ, HuangM (2003). Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA, 100(11): 6628–6633

DOI PMID

123
YeH, RouaultT A (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry, 49(24): 4945–4956

DOI PMID

124
YenY, GrillS P, DutschmanG E, ChangC N, ZhouB S, ChengY C (1994). Characterization of a hydroxyurea-resistant human KB cell line with supersensitivity to 6-thioguanine. Cancer Res, 54(14): 3686–3691

PMID

125
YuY, WongJ, LovejoyD B, KalinowskiD S, RichardsonD R (2006). Chelators at the cancer coalface: desferrioxamine to Triapine and beyond. Clin Cancer Res, 12(23): 6876–6883

DOI PMID

126
ZeidnerJ F, KarpJ E, BlackfordA L, SmithB D, GojoI, GoreS D, LevisM J, CarrawayH E, GreerJ M, IvyS P, PratzK W, McDevittM A (2013). Phase II trial of sequential ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. Haematologica,

DOI PMID

127
ZhangY, LiuL, WuX, AnX, StubbeJ, HuangM (2011). Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. J Biol Chem, 286(48): 41499–41509

DOI PMID

128
ZhangY, LyverE R, Nakamaru-OgisoE, YoonH, AmuthaB, LeeD W, BiE, OhnishiT, DaldalF, PainD, DancisA (2008). Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol, 28(18): 5569–5582

DOI PMID

129
ZhaoX, ChabesA, DomkinV, ThelanderL, RothsteinR (2001). The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J, 20(13): 3544–3553

DOI PMID

130
ZuckermanJ E, HsuehT, KoyaR C, DavisM E, RibasA (2011). siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J Invest Dermatol, 131(2): 453–460

DOI PMID

Outlines

/