![](/develop/static/imgs/pdf.png)
Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition
Caiguo ZHANG, Guoqi LIU, Mingxia HUANG
Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition
Ribonucleotide reductase (RNR) supplies cellular deoxyribonucleotide triphosphates (dNTP) pools by converting ribonucleotides to the corresponding deoxy forms using radical-based chemistry. Eukaryotic RNR comprises α and β subunits: α contains the catalytic and allosteric sites; β houses a diferric-tyrosyl radical cofactor (FeIII2-Y•) that is required to initiates nucleotide reduction in α. Cells have evolved multi-layered mechanisms to regulate RNR level and activity in order to maintain the adequate sizes and ratios of their dNTP pools to ensure high-fidelity DNA replication and repair. The central role of RNR in nucleotide metabolism also makes it a proven target of chemotherapeutics. In this review, we discuss recent progress in understanding the function and regulation of eukaryotic RNRs, with a focus on studies revealing the cellular machineries involved in RNR metallocofactor biosynthesis and its implication in RNR-targeting therapeutics.
ribonucleotide reductase (RNR) / diferric-tyrosyl radical (FeIII2-Y•) / iron homeostasis
[1] |
AllenJ B, ZhouZ, SiedeW, FriedbergE C, ElledgeS J (1994). The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev, 8(20): 2401–2415
CrossRef
Pubmed
Google scholar
|
[2] |
AtkinC L, ThelanderL, ReichardP, LangG (1973). Iron and free radical in ribonucleotide reductase. Exchange of iron and Mössbauer spectroscopy of the protein B2 subunit of the Escherichia coli enzyme. J Biol Chem, 248(21): 7464–7472
Pubmed
|
[3] |
AyeY, BrignoleE J, LongM J, ChittuluruJ, DrennanC L, AsturiasF J, StubbeJ (2012a). Clofarabine targets the large subunit (α) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem Biol, 19(7): 799–805
CrossRef
Pubmed
Google scholar
|
[4] |
AyeY, LongM J, StubbeJ (2012b). Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J Biol Chem, 287(42): 35768–35778
CrossRef
Pubmed
Google scholar
|
[5] |
BarlowT, EliassonR, PlatzA, ReichardP, SjöbergB M (1983). Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc Natl Acad Sci USA, 80(6): 1492–1495
CrossRef
Pubmed
Google scholar
|
[6] |
BianchiV, PontisE, ReichardP (1986). Changes of deoxyribonucleoside triphosphate pools induced by hydroxyurea and their relation to DNA synthesis. J Biol Chem, 261(34): 16037–16042
Pubmed
|
[7] |
BjörklundS, SkogS, TribukaitB, ThelanderL (1990). S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry, 29(23): 5452–5458
CrossRef
Pubmed
Google scholar
|
[8] |
BoehmerP E, LehmanI R (1997). Herpes simplex virus DNA replication. Annu Rev Biochem, 66(1): 347–384
CrossRef
Pubmed
Google scholar
|
[9] |
BollingerJ M Jr, EdmondsonD E, HuynhB H, FilleyJ, NortonJ R, StubbeJ (1991). Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. Science, 253(5017): 292–298
CrossRef
Pubmed
Google scholar
|
[10] |
BollingerJ M Jr, JiangW, GreenM T, KrebsC (2008). The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Curr Opin Struct Biol, 18(6): 650–657
CrossRef
Pubmed
Google scholar
|
[11] |
BollingerJ M Jr, TongW H, RaviN, HuynhB H, EdmondsonD E, StubbeJ A (1995). Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical cofactor of E. coli ribonucleotide reductase. Methods Enzymol, 258: 278–303
CrossRef
Pubmed
Google scholar
|
[12] |
BrockmanR W, ShaddixS, LasterW R Jr, SchabelF M Jr (1970). Inhibition of ribonucleotide reductase, DNA synthesis, and L1210 leukemia by guanazole. Cancer Res, 30(9): 2358–2368
Pubmed
|
[13] |
BurrellR A, McClellandS E, EndesfelderD, GrothP, WellerM C, ShaikhN, DomingoE, KanuN, DewhurstS M, GronroosE, ChewS K, RowanA J, SchenkA, ShefferM, HowellM, KschischoM, BehrensA, HelledayT, BartekJ, TomlinsonI P, SwantonC (2013). Replication stress links structural and numerical cancer chromosomal instability. Nature, 494(7438): 492–496
CrossRef
Pubmed
Google scholar
|
[14] |
BussJ L, TortiF M, TortiS V (2003). The role of iron chelation in cancer therapy. Curr Med Chem, 10(12): 1021–1034
CrossRef
Pubmed
Google scholar
|
[15] |
CairnsR A, HarrisI S, MakT W (2011). Regulation of cancer cell metabolism. Nat Rev Cancer, 11(2): 85–95
CrossRef
Pubmed
Google scholar
|
[16] |
CampestreC, AgamennoneM, TortorellaP, PreziusoS, BiasoneA, GavuzzoE, PochettiG, MazzaF, HillerO, TschescheH, ConsalviV, GallinaC (2006). N-Hydroxyurea as zinc binding group in matrix metalloproteinase inhibition: mode of binding in a complex with MMP-8. Bioorg Med Chem Lett, 16(1): 20–24
CrossRef
Pubmed
Google scholar
|
[17] |
CerqueiraN M, FernandesP A, RamosM J (2007). Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents. Recent Patents Anticancer Drug Discov, 2(1): 11–29
CrossRef
Pubmed
Google scholar
|
[18] |
ChabesA, GeorgievaB, DomkinV, ZhaoX, RothsteinR, ThelanderL (2003a). Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell, 112(3): 391–401
CrossRef
Pubmed
Google scholar
|
[19] |
ChabesA, ThelanderL (2003). DNA building blocks at the foundation of better survival. Cell Cycle, 2(3): 171–173
CrossRef
Pubmed
Google scholar
|
[20] |
ChabesA L, PflegerC M, KirschnerM W, ThelanderL (2003b). Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA, 100(7): 3925–3929
CrossRef
Pubmed
Google scholar
|
[21] |
ChaboutéM E, ClémentB, PhilippsG (2002). S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5′ leader sequence. J Biol Chem, 277(20): 17845–17851
CrossRef
Pubmed
Google scholar
|
[22] |
ChaboutéM E, ClémentB, SekineM, PhilippsG, Chaubet-GigotN (2000). Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell, 12(10): 1987–2000
Pubmed
|
[23] |
ChastonT B, LovejoyD B, WattsR N, RichardsonD R (2003). Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin Cancer Res, 9(1): 402–414
Pubmed
|
[24] |
ChastonT B, RichardsonD R (2003). Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am J Hematol, 73(3): 200–210
CrossRef
Pubmed
Google scholar
|
[25] |
ClimentI, SjöbergB M, HuangC Y (1991). Carboxyl-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry, 30(21): 5164–5171
CrossRef
Pubmed
Google scholar
|
[26] |
CotruvoJ A Jr, StubbeJ (2010). An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry, 49(6): 1297–1309
CrossRef
Pubmed
Google scholar
|
[27] |
CotruvoJ A Jr, StubbeJ (2011). Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem, 80(1): 733–767
CrossRef
Pubmed
Google scholar
|
[28] |
CovesJ, ZeghoufM, MacherelD, GuigliarelliB, AssoM, FontecaveM (1997). Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli. Biochemistry, 36(19): 5921–5928
CrossRef
Pubmed
Google scholar
|
[29] |
D’AngiolellaV, DonatoV, ForresterF M, JeongY T, PellacaniC, KudoY, SarafA, FlorensL, WashburnM P, PaganoM (2012). Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell, 149(5): 1023–1034
CrossRef
Pubmed
Google scholar
|
[30] |
DaviesB W, KohanskiM A, SimmonsL A, WinklerJ A, CollinsJ J, WalkerG C (2009). Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell, 36(5): 845–860
CrossRef
Pubmed
Google scholar
|
[31] |
DayaniP N, BishopM C, BlackK, ZeltzerP M (2004). Desferoxamine (DFO)—mediated iron chelation: rationale for a novel approach to therapy for brain cancer. J Neurooncol, 67(3): 367–377
CrossRef
Pubmed
Google scholar
|
[32] |
DonehowerR C (1992). An overview of the clinical experience with hydroxyurea. Semin Oncol, 19(3 Suppl 9): 11–19
Pubmed
|
[33] |
EklundH, UhlinU, FärnegårdhM, LoganD T, NordlundP (2001). Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol, 77(3): 177–268
CrossRef
Pubmed
Google scholar
|
[34] |
ElledgeS J, ZhouZ, AllenJ B, NavasT A (1993). DNA damage and cell cycle regulation of ribonucleotide reductase. BioEssays, 15: 333–339
|
[35] |
EnyedyE A, PrimikM F, KowolC R, ArionV B, KissT, KepplerB K (2011). Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study. Dalton Trans, 40(22): 5895–5905
CrossRef
Pubmed
Google scholar
|
[36] |
FanH, VillegasC, HuangA, WrightJ A (1998). The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res, 58(8): 1650–1653
Pubmed
|
[37] |
FinchR A, LiuM C, CoryA H, CoryJ G, SartorelliA C (1999). Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): an inhibitor of ribonucleotide reductase with antineoplastic activity. Adv Enzyme Regul, 39(1): 3–12
CrossRef
Pubmed
Google scholar
|
[38] |
FishbeinW N, CarboneP P (1963). Hydroxyurea: Mechanism of Action. Science, 142(3595): 1069–1070
CrossRef
Pubmed
Google scholar
|
[39] |
FontecaveM, EliassonR, ReichardP (1987). NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem, 262(25): 12325–12331
Pubmed
|
[40] |
FontecaveM, EliassonR, ReichardP (1989). Enzymatic regulation of the radical content of the small subunit of Escherichia coli ribonucleotide reductase involving reduction of its redox centers. J Biol Chem, 264(16): 9164–9170
Pubmed
|
[41] |
FontecaveM, MulliezE, LoganD T (2002). Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog Nucleic Acid Res Mol Biol, 72: 95–127
CrossRef
Pubmed
Google scholar
|
[42] |
GwiltP R, TracewellW G (1998). Pharmacokinetics and pharmacodynamics of hydroxyurea. Clin Pharmacokinet, 34(5): 347–358
CrossRef
Pubmed
Google scholar
|
[43] |
HalimiY, DessauM, PollakS, AstT, ErezT, Livnat-LevanonN, KarniolB, HirschJ A, ChamovitzD A (2011). COP9 signalosome subunit 7 from Arabidopsis interacts with and regulates the small subunit of ribonucleotide reductase (RNR2). Plant Mol Biol, 77(1-2): 77–89
CrossRef
Pubmed
Google scholar
|
[44] |
HanahanD, WeinbergR A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[45] |
HaoZ, QiaoT, JinX, LiX, GaoJ, FanD (2005). Preparation and characterization of a specific monoclonal antibody against CIAPIN1. Hybridoma (Larchmt), 24(3): 141–145
CrossRef
Pubmed
Google scholar
|
[46] |
HarperJ W, ElledgeS J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745
CrossRef
Pubmed
Google scholar
|
[47] |
HaunhorstP, HanschmannE M, BräutigamL, StehlingO, HoffmannB, MühlenhoffU, LillR, BerndtC, LilligC H (2013). Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol Biol Cell, 24(12): 1895–1903
CrossRef
Pubmed
Google scholar
|
[48] |
HoferA, CronaM, LoganD T, SjöbergB M (2012). DNA building blocks: keeping control of manufacture. Crit Rev Biochem Mol Biol, 47(1): 50–63
CrossRef
Pubmed
Google scholar
|
[49] |
HristovaD, WuC H, JiangW, KrebsC, StubbeJ (2008). Importance of the maintenance pathway in the regulation of the activity of Escherichia coli ribonucleotide reductase. Biochemistry, 47(13): 3989–3999
CrossRef
Pubmed
Google scholar
|
[50] |
HuC M, YehM T, TsaoN, ChenC W, GaoQ Z, ChangC Y, LeeM H, FangJ M, SheuS Y, LinC J, TsengM C, ChenY J, ChangZ F (2012). Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell, 22(1): 36–50
CrossRef
Pubmed
Google scholar
|
[51] |
HuangM, ElledgeS J (1997). Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17(10): 6105–6113
Pubmed
|
[52] |
JiangW, YunD, SalehL, BarrE W, XingG, HoffartL M, MaslakM A, KrebsC, BollingerJ M Jr (2007). A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science, 316(5828): 1188–1191
CrossRef
Pubmed
Google scholar
|
[53] |
JohnsD G, GaoW Y (1998). Selective depletion of DNA precursors: an evolving strategy for potentiation of dideoxynucleoside activity against human immunodeficiency virus. Biochem Pharmacol, 55(10): 1551–1556
Pubmed
|
[54] |
JordanA, ReichardP (1998). Ribonucleotide reductases. Annu Rev Biochem, 67(1): 71–98
CrossRef
Pubmed
Google scholar
|
[55] |
KaplanJ, McVey WardD, CrispR J, PhilpottC C (2006). Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta, 1763(7): 646–651
CrossRef
Pubmed
Google scholar
|
[56] |
KashlanO B, CoopermanB S (2003). Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry, 42(6): 1696–1706
CrossRef
Pubmed
Google scholar
|
[57] |
KeP Y, KuoY Y, HuC M, ChangZ F (2005). Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev, 19(16): 1920–1933
CrossRef
Pubmed
Google scholar
|
[58] |
KennedyB J (1992). The evolution of hydroxyurea therapy in chronic myelogenous leukemia. Semin Oncol, 19(3 Suppl 9): 21–26
Pubmed
|
[59] |
KolbergM, StrandK R, GraffP, AnderssonK K (2004). Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta, 1699(1-2): 1–34
CrossRef
Pubmed
Google scholar
|
[60] |
KumarD, VibergJ, NilssonA K, ChabesA (2010). Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res, 38(12): 3975–3983
CrossRef
Pubmed
Google scholar
|
[61] |
KunkelT A, SilberJ R, LoebL A (1982). The mutagenic effect of deoxynucleotide substrate imbalances during DNA synthesis with mammalian DNA polymerases. Mutat Res, 94(2): 413–419
CrossRef
Pubmed
Google scholar
|
[62] |
KunosC, RadivoyevitchT, Abdul-KarimF W, FanningJ, AbulafiaO, BonebrakeA J, UshaL (2012). Ribonucleotide reductase inhibition restores platinum-sensitivity in platinum-resistant ovarian cancer: a Gynecologic Oncology Group Study. J Transl Med, 10(1): 79
CrossRef
Pubmed
Google scholar
|
[63] |
KuritaJ, NakajimaK (2012). Megalocytiviruses. Viruses, 4(4): 521–538
CrossRef
Pubmed
Google scholar
|
[64] |
LassmannG, ThelanderL, GräslundA (1992). EPR stopped-flow studies of the reaction of the tyrosyl radical of protein R2 from ribonucleotide reductase with hydroxyurea. Biochem Biophys Res Commun, 188(2): 879–887
CrossRef
Pubmed
Google scholar
|
[65] |
LeeY D, WangJ, StubbeJ, ElledgeS J (2008). Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell, 32(1): 70–80
CrossRef
Pubmed
Google scholar
|
[66] |
LillR, HoffmannB, MolikS, PierikA J, RietzschelN, StehlingO, UzarskaM A, WebertH, WilbrechtC, MühlenhoffU (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508
CrossRef
Pubmed
Google scholar
|
[67] |
LiuC, PowellK A, MundtK, WuL, CarrA M, CaspariT (2003). Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev, 17(9): 1130–1140
CrossRef
Pubmed
Google scholar
|
[68] |
LiuX, ZhouB, XueL, YenF, ChuP, UnF, YenY (2007). Ribonucleotide reductase subunits M2 and p53R2 are potential biomarkers for metastasis of colon cancer. Clin Colorectal Cancer, 6(5): 374–381
CrossRef
Pubmed
Google scholar
|
[69] |
LoebL A, KunkelT A (1982). Fidelity of DNA synthesis. Annu Rev Biochem, 51(1): 429–457
CrossRef
Pubmed
Google scholar
|
[70] |
LoganD T, MulliezE, LarssonK M, BodevinS, AttaM, GarnaudP E, SjobergB M, FontecaveM (2003). A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase. Proc Natl Acad Sci USA, 100(7): 3826–3831
CrossRef
Pubmed
Google scholar
|
[71] |
LovejoyD B, RichardsonD R (2003). Iron chelators as anti-neoplastic agents: current developments and promise of the PIH class of chelators. Curr Med Chem, 10(12): 1035–1049
CrossRef
Pubmed
Google scholar
|
[72] |
MadaanK, KaushikD, VermaT (2012). Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther, 12(1): 19–29
CrossRef
Pubmed
Google scholar
|
[73] |
MathewsC K (2006). DNA precursor metabolism and genomic stability. FASEB J, 20: 1300–1314
|
[74] |
MayhewC N, SumpterR, InayatM, CibullM, PhillipsJ D, ElfordH L, GallicchioV S (2005). Combination of inhibitors of lymphocyte activation (hydroxyurea, trimidox, and didox) and reverse transcriptase (didanosine) suppresses development of murine retrovirus-induced lymphoproliferative disease. Antiviral Res, 65(1): 13–22
CrossRef
Pubmed
Google scholar
|
[75] |
MinnihanE C, AndoN, BrignoleE J, OlshanskyL, ChittuluruJ, AsturiasF J, DrennanC L, NoceraD G, StubbeJ (2013a). Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proc Natl Acad Sci USA, 110(10): 3835–3840
CrossRef
Pubmed
Google scholar
|
[76] |
MinnihanE C, NoceraD G, StubbeJ (2013b). Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res, 46(11): 2524–2535
CrossRef
Pubmed
Google scholar
|
[77] |
MiyajimaH, TakahashiY, KamataT, ShimizuH, SakaiN, GitlinJ D (1997). Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol, 41(3): 404–407
CrossRef
Pubmed
Google scholar
|
[78] |
MowaM B, WarnerD F, KaplanG, KanaB D, MizrahiV (2009). Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J Bacteriol, 191(3): 985–995
CrossRef
Pubmed
Google scholar
|
[79] |
MühlenhoffU, MolikS, GodoyJ R, UzarskaM A, RichterN, SeubertA, ZhangY, StubbeJ, PierrelF, HerreroE, LilligC H, LillR (2010). Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab, 12(4): 373–385
CrossRef
Pubmed
Google scholar
|
[80] |
NakanoK, BálintE, AshcroftM, VousdenK H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289
CrossRef
Pubmed
Google scholar
|
[81] |
NetzD J, StümpfigM, DoréC, MühlenhoffU, PierikA J, LillR (2010). Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol, 6(10): 758–765
CrossRef
Pubmed
Google scholar
|
[82] |
NiidaH, KatsunoY, SengokuM, ShimadaM, YukawaM, IkuraM, IkuraT, KohnoK, ShimaH, SuzukiH, TashiroS, NakanishiM (2010). Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev, 24(4): 333–338
CrossRef
Pubmed
Google scholar
|
[83] |
NordlundP, ReichardP (2006). Ribonucleotide reductases. Annu Rev Biochem, 75(1): 681–706
CrossRef
Pubmed
Google scholar
|
[84] |
NyholmS, ThelanderL, GräslundA (1993). Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry, 32(43): 11569–11574
CrossRef
Pubmed
Google scholar
|
[85] |
OffenbacherA R, VassilievI R, SeyedsayamdostM R, StubbeJ, BarryB A (2009). Redox-linked structural changes in ribonucleotide reductase. J Am Chem Soc, 131(22): 7496–7497
CrossRef
Pubmed
Google scholar
|
[86] |
OrmöM, deMaréF, RegnströmK, AbergA, SahlinM, LingJ, LoehrT M, Sanders-LoehrJ, SjöbergB M (1992). Engineering of the iron site in ribonucleotide reductase to a self-hydroxylating monooxygenase. J Biol Chem, 267(13): 8711–8714
Pubmed
|
[87] |
OrtigosaA D, HristovaD, PerlsteinD L, ZhangZ, HuangM, StubbeJ (2006). Determination of the in vivo stoichiometry of tyrosyl radical per betabeta’ in Saccharomyces cerevisiae ribonucleotide reductase. Biochemistry, 45(40): 12282–12294
CrossRef
Pubmed
Google scholar
|
[88] |
PollycoveM, MaqsoodM (1962). Existence of an erythropoietic labile iron pool in animals. Nature, 194(4824): 152–154
CrossRef
Pubmed
Google scholar
|
[89] |
Pujol-CarrionN, BelliG, HerreroE, NoguesA, de la Torre-RuizM A (2006). Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci, 119(Pt 21): 4554–4564
CrossRef
Pubmed
Google scholar
|
[90] |
ReeceS Y, HodgkissJ M, StubbeJ, NoceraD G (2006). Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc Lond B Biol Sci, 361(1472): 1351–1364
CrossRef
Pubmed
Google scholar
|
[91] |
ReichardP (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem, 57(1): 349–374
CrossRef
Pubmed
Google scholar
|
[92] |
ReichardP (1993). From RNA to DNA, why so many ribonucleotide reductases? Science, 260(5115): 1773–1777
CrossRef
Pubmed
Google scholar
|
[93] |
RenS, WangR, KomatsuK, Bonaz-KrauseP, ZyrianovY, McKennaC E, CsipkeC, TokesZ A, LienE J (2002). Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J Med Chem, 45(2): 410–419
CrossRef
Pubmed
Google scholar
|
[94] |
RichardsonD R, KalinowskiD S, RichardsonV, SharpeP C, LovejoyD B, IslamM, BernhardtP V (2009). 2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: redox activity, iron complexation and characterization of their antitumor activity. J Med Chem, 52(5): 1459–1470
CrossRef
Pubmed
Google scholar
|
[95] |
RofougaranR, VodnalaM, HoferA (2006). Enzymatically active mammalian ribonucleotide reductase exists primarily as an alpha6beta2 octamer. J Biol Chem, 281(38): 27705–27711
CrossRef
Pubmed
Google scholar
|
[96] |
RouaultT, KlausnerR (1997). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul, 35: 1–19
CrossRef
Pubmed
Google scholar
|
[97] |
SaitoY, ShibayamaH, TanakaH, TanimuraA, MatsumuraI, KanakuraY (2011). PICOT is a molecule which binds to anamorsin. Biochem Biophys Res Commun, 408(2): 329–333
CrossRef
Pubmed
Google scholar
|
[98] |
SaldivarJ C, MiumaS, BeneJ, HosseiniS A, ShibataH, SunJ, WheelerL J, MathewsC K, HuebnerK (2012). Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet, 8(11): e1003077
CrossRef
Pubmed
Google scholar
|
[99] |
SaloweS, BollingerJ M Jr, AtorM, StubbeJ, McCrakenJ, PeisachJ, SamanoM C, RobinsM J (1993). Alternative model for mechanism-based inhibition of Escherichia coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine 5′-diphosphate. Biochemistry, 32(47): 12749–12760
CrossRef
Pubmed
Google scholar
|
[100] |
SanvisensN, de LlanosR, PuigS (2013). Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability. Biomed J, 36: 51–58
|
[101] |
ScozzafavaA, SupuranC T (2003). Hydroxyurea is a carbonic anhydrase inhibitor. Bioorg Med Chem, 11(10): 2241–2246
CrossRef
Pubmed
Google scholar
|
[102] |
ShaoJ, LiuX, ZhuL, YenY (2013). Targeting ribonucleotide reductase for cancer therapy. Expert Opin Ther Targets, 17(12): 1423–1437
CrossRef
Pubmed
Google scholar
|
[103] |
ShaoJ, ZhouB, Di BilioA J, ZhuL, WangT, QiC, ShihJ, YenY (2006). A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol Cancer Ther, 5(3): 586–592
CrossRef
Pubmed
Google scholar
|
[104] |
ShaoJ, ZhouB, ZhuL, QiuW, YuanY C, XiB, YenY (2004). In vitro characterization of enzymatic properties and inhibition of the p53R2 subunit of human ribonucleotide reductase. Cancer Res, 64(1): 1–6
CrossRef
Pubmed
Google scholar
|
[105] |
ShibayamaH, TakaiE, MatsumuraI, KounoM, MoriiE, KitamuraY, TakedaJ, KanakuraY (2004). Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med, 199(4): 581–592
CrossRef
Pubmed
Google scholar
|
[106] |
SjöbergB M, ReichardP (1977). Nature of the free radical in ribonucleotide reductase from Escherichia coli. J Biol Chem, 252(2): 536–541
Pubmed
|
[107] |
SongS, PursellZ F, CopelandW C, LongleyM J, KunkelT A, MathewsC K (2005). DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci USA, 102(14): 4990–4995
CrossRef
Pubmed
Google scholar
|
[108] |
SouglakosJ, BoukovinasI, TaronM, MendezP, MavroudisD, TripakiM, HatzidakiD, KoutsopoulosA, StathopoulosE, GeorgouliasV, RosellR (2008). Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer, 98(10): 1710–1715
CrossRef
Pubmed
Google scholar
|
[109] |
StubbeJ (2003). Di-iron-tyrosyl radical ribonucleotide reductases. Curr Opin Chem Biol, 7(2): 183–188
CrossRef
Pubmed
Google scholar
|
[110] |
StubbeJ, CotruvoJ A Jr (2011). Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese? Curr Opin Chem Biol, 15(2): 284–290
CrossRef
Pubmed
Google scholar
|
[111] |
StubbeJ, GeJ, YeeC S (2001). The evolution of ribonucleotide reduction revisited. Trends Biochem Sci, 26(2): 93–99
CrossRef
Pubmed
Google scholar
|
[112] |
StubbeJ, van Der DonkW A (1998). Protein Radicals in Enzyme Catalysis. Chem Rev, 98(2): 705–762
CrossRef
Pubmed
Google scholar
|
[113] |
TanakaH, ArakawaH, YamaguchiT, ShiraishiK, FukudaS, MatsuiK, TakeiY, NakamuraY (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 404(6773): 42–49
CrossRef
Pubmed
Google scholar
|
[114] |
ThelanderL, GräslundA, ThelanderM (1983). Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem Biophys Res Commun, 110(3): 859–865
CrossRef
Pubmed
Google scholar
|
[115] |
WangJ, LohmanG J, StubbeJ (2007). Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases. Proc Natl Acad Sci USA, 104(36): 14324–14329
CrossRef
Pubmed
Google scholar
|
[116] |
WhiteM F, DillinghamM S (2012). Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol, 22(1): 94–100
CrossRef
Pubmed
Google scholar
|
[117] |
WillingA, FollmannH, AulingG (1988). Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur J Bio, 170: 603–611
|
[118] |
WuC H, JiangW, KrebsC, StubbeJ (2007). YfaE, a ferredoxin involved in diferric-tyrosyl radical maintenance in Escherichia coli ribonucleotide reductase. Biochemistry, 46(41): 11577–11588
CrossRef
Pubmed
Google scholar
|
[119] |
WuX, HuangM (2008). Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Mol Cell Biol, 28(23): 7156–7167
CrossRef
Pubmed
Google scholar
|
[120] |
XueL, ZhouB, LiuX, QiuW, JinZ, YenY (2003). Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res, 63(5): 980–986
Pubmed
|
[121] |
YangF D, SpanevelloR A, CelikerI, HirschmannR, RubinH, CoopermanB S (1990). The carboxyl terminus heptapeptide of the R2 subunit of mammalian ribonucleotide reductase inhibits enzyme activity and can be used to purify the R1 subunit. FEBS Lett, 272(1-2): 61–64
CrossRef
Pubmed
Google scholar
|
[122] |
YaoR, ZhangZ, AnX, BucciB, PerlsteinD L, StubbeJ, HuangM (2003). Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci USA, 100(11): 6628–6633
CrossRef
Pubmed
Google scholar
|
[123] |
YeH, RouaultT A (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry, 49(24): 4945–4956
CrossRef
Pubmed
Google scholar
|
[124] |
YenY, GrillS P, DutschmanG E, ChangC N, ZhouB S, ChengY C (1994). Characterization of a hydroxyurea-resistant human KB cell line with supersensitivity to 6-thioguanine. Cancer Res, 54(14): 3686–3691
Pubmed
|
[125] |
YuY, WongJ, LovejoyD B, KalinowskiD S, RichardsonD R (2006). Chelators at the cancer coalface: desferrioxamine to Triapine and beyond. Clin Cancer Res, 12(23): 6876–6883
CrossRef
Pubmed
Google scholar
|
[126] |
ZeidnerJ F, KarpJ E, BlackfordA L, SmithB D, GojoI, GoreS D, LevisM J, CarrawayH E, GreerJ M, IvyS P, PratzK W, McDevittM A (2013). Phase II trial of sequential ribonucleotide reductase inhibition in aggressive myeloproliferative neoplasms. Haematologica,
CrossRef
Pubmed
Google scholar
|
[127] |
ZhangY, LiuL, WuX, AnX, StubbeJ, HuangM (2011). Investigation of in vivo diferric tyrosyl radical formation in Saccharomyces cerevisiae Rnr2 protein: requirement of Rnr4 and contribution of Grx3/4 AND Dre2 proteins. J Biol Chem, 286(48): 41499–41509
CrossRef
Pubmed
Google scholar
|
[128] |
ZhangY, LyverE R, Nakamaru-OgisoE, YoonH, AmuthaB, LeeD W, BiE, OhnishiT, DaldalF, PainD, DancisA (2008). Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol, 28(18): 5569–5582
CrossRef
Pubmed
Google scholar
|
[129] |
ZhaoX, ChabesA, DomkinV, ThelanderL, RothsteinR (2001). The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J, 20(13): 3544–3553
CrossRef
Pubmed
Google scholar
|
[130] |
ZuckermanJ E, HsuehT, KoyaR C, DavisM E, RibasA (2011). siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J Invest Dermatol, 131(2): 453–460
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |