REVIEW

Structural biology of the macroautophagy machinery

  • Leon H. CHEW ,
  • Calvin K. YIP
Expand
  • Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada

Received date: 01 Oct 2013

Accepted date: 22 Dec 2013

Published date: 01 Feb 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.

Cite this article

Leon H. CHEW , Calvin K. YIP . Structural biology of the macroautophagy machinery[J]. Frontiers in Biology, 2014 , 9(1) : 18 -34 . DOI: 10.1007/s11515-014-1293-3

1
AitaV M, LiangX H, MurtyV V, PincusD L, YuW, CayanisE, KalachikovS, GilliamT C, LevineB (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1): 59–65

DOI PMID

2
ArakiY, KuW C, AkiokaM, MayA I, HayashiY, ArisakaF, IshihamaY, OhsumiY (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol, 203(2): 299–313

DOI PMID

3
AshrafiG, SchwarzT L (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1): 31–42

DOI PMID

4
AxeE L, WalkerS A, ManifavaM, ChandraP, RoderickH L, HabermannA, GriffithsG, KtistakisN T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701

DOI PMID

5
BaskaranS, RagusaM J, BouraE, HurleyJ H (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell, 47(3): 339–348

DOI PMID

6
BirgisdottirA B, LamarkT, JohansenT (2013). The LIR motif- crucial for selective autophagy. J Cell Sci, 126(Pt 15): 3237–3247

PMID

7
BurdaP, PadillaS M, SarkarS, EmrS D (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci, 115(Pt 20): 3889–3900

DOI PMID

8
ChanE Y W, LongattiA, McKnightN C, ToozeS A (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol, 29(1): 157–171

DOI PMID

9
CheongH, NairU, GengJ, KlionskyD J (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2): 668–681

DOI PMID

10
CheongH, YorimitsuT, ReggioriF, LegakisJ E, WangC W, KlionskyD J (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7): 3438–3453

DOI PMID

132
ChewL H, SetiaputraD, KlionskyD J, YipC K (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy, 9: 1467–1474

11
ChoiA M K, RyterS W, LevineB (2013). Autophagy in human health and disease. N Engl J Med, 368(7): 651–662

DOI PMID

12
CoyleJ E, QamarS, RajashankarK R, NikolovD B (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 33(1): 63–74

DOI PMID

13
DoveS K, PiperR C, McEwenR K, YuJ W, KingM C, HughesD C, ThuringJ, HolmesA B, CookeF T, MichellR H, ParkerP J, LemmonM A (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J, 23(9): 1922–1933

DOI PMID

14
FanW, NassiriA, ZhongQ (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA, 108(19): 7769–7774

DOI PMID

15
FengW, HuangS, WuH, ZhangM (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 372(1): 223–235

DOI PMID

16
FogelA I, DlouhyB J, WangC, RyuS W, NeutznerA, HassonS A, SiderisD P, AbeliovichH, YouleR J (2013). Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 33(18): 3675–3688

DOI PMID

17
FujiokaY, NodaN N, NakatogawaH, OhsumiY, InagakiF (2010). Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 285(2): 1508–1515

DOI PMID

18
FuruyaN, YuJ, ByfieldM, PattingreS, LevineB (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1): 46–52

DOI PMID

19
GammohN, FloreyO, OverholtzerM, JiangX (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149

DOI PMID

20
GanleyI G, LamH, WangJ, DingX, ChenS, JiangX (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305

DOI PMID

21
GaugelA, BakulaD, HoffmannA, Proikas-CezanneT (2012). Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J Mol Signal, 7(1): 16

DOI PMID

22
HaileyD W, RamboldA S, Satpute-KrishnanP, MitraK, SougratR, KimP K, Lippincott-SchwartzJ (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4): 656–667

DOI PMID

23
HamasakiM, FurutaN, MatsudaA, NezuA, YamamotoA, FujitaN, OomoriH, NodaT, HaraguchiT, HiraokaY, AmanoA, YoshimoriT (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441): 389–393

DOI PMID

24
Hayashi-NishinoM, FujitaN, NodaT, YamaguchiA, YoshimoriT, YamamotoA (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12): 1433–1437

DOI PMID

25
HeenanE J, VanhookeJ L, TempleB R, BettsL, SondekJ E, DohlmanH G (2009). Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry, 48(27): 6390–6401

DOI PMID

26
HongS B, KimB W, KimJ H, SongH K (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr, 68(Pt 10): 1409–1417

DOI PMID

27
HongS B, KimB W, LeeK E, KimS W, JeonH, KimJ, SongH K (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol, 18(12): 1323–1330

DOI PMID

28
HosokawaN, SasakiT, IemuraS, NatsumeT, HaraT, MizushimaN (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7): 973–979

DOI PMID

29
HuangW, ChoiW, HuW, MiN, GuoQ, MaM, LiuM, TianY, LuP, WangF L, DengH, LiuL, GaoN, YuL, ShiY (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res, 22(3): 473–489

DOI PMID

30
IchimuraY, KirisakoT, TakaoT, SatomiY, ShimonishiY, IshiharaN, MizushimaN, TanidaI, KominamiE, OhsumiM, NodaT, OhsumiY (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811): 488–492

DOI PMID

31
ItakuraE, KishiC, InoueK, MizushimaN (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12): 5360–5372

DOI PMID

32
JaoC C, RagusaM J, StanleyR E, HurleyJ H (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci USA, 110(14): 5486–5491

DOI PMID

33
KabeyaY, KamadaY, BabaM, TakikawaH, SasakiM, OhsumiY (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell, 16(5): 2544–2553

DOI PMID

34
KabeyaY, MizushimaN, YamamotoA, Oshitani-OkamotoS, OhsumiY, YoshimoriT (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 117(Pt 13): 2805–2812

DOI PMID

133
KabeyaY, MizushimaN, UenoT, YamamotoA, KirisakoT, NodaT, KominamiE, OhsumiY, YoshimoriT (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19: 5720–5728

35
KabeyaY, NodaN N, FujiokaY, SuzukiK, InagakiF, OhsumiY (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 389(4): 612–615

DOI PMID

36
KaiserS E, MaoK, TaherbhoyA M, YuS, OlszewskiJ L, DudaD M, KurinovI, DengA, FennT D, KlionskyD J, SchulmanB A (2012). Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 19(12): 1242–1249

DOI PMID

37
KakutaS, YamamotoH, NegishiL, Kondo-KakutaC, HayashiN, OhsumiY (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem, 287(53): 44261–44269

DOI PMID

38
KamadaY, FunakoshiT, ShintaniT, NaganoK, OhsumiM, OhsumiY (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150(6): 1507–1513

DOI PMID

39
KaranasiosE, StapletonE, ManifavaM, KaizukaT, MizushimaN, WalkerS A, KtistakisN T (2013). Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 126(Pt 22): 5224–5238

DOI PMID

40
KiharaA, NodaT, IshiharaN, OhsumiY (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519–30

41
KijanskaM, DohnalI, ReiterW, KasparS, StoffelI, AmmererG, KraftC, PeterM (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 6(8): 1168–1178

DOI PMID

42
KimJ, KunduM, ViolletB, GuanK L (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141

DOI PMID

43
KnightD, HarrisR, McAlisterM S B, PhelanJ P, GeddesS, MossS J, DriscollP C, KeepN H (2002). The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem, 277(7): 5556–5561

DOI PMID

44
KobayashiT, SuzukiK, OhsumiY (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett, 586(16): 2473–2478

DOI PMID

45
Kondo-OkamotoN, NodaN N, SuzukiS W, NakatogawaH, TakahashiI, MatsunamiM, HashimotoA, InagakiF, OhsumiY, OkamotoK (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem, 287(13): 10631–10638

DOI PMID

46
KraftC, DeplazesA, SohrmannM, PeterM (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610

DOI PMID

47
KraftC, KijanskaM, KalieE, SiergiejukE, LeeS S, SemplicioG, StoffelI, BrezovichA, VermaM, HansmannI, AmmererG, HofmannK, ToozeS, PeterM (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J, 31(18): 3691–3703

DOI PMID

48
KrickR, BusseR A, ScaciocA, StephanM, JanshoffA, ThummM, KühnelK (2012). Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA, 109(30): E2042–E2049

DOI PMID

49
KrickR, MueheY, PrickT, BremerS, SchlotterhoseP, EskelinenE L, MillenJ, GoldfarbD S, ThummM (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell, 19(10): 4492–4505

DOI PMID

50
KuB, WooJ S, LiangC, LeeK H, HongH S, eX, KimK S, JungJ U, OhB H (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog, 4(2): e25

DOI PMID

51
KumaA, MizushimaN, IshiharaN, OhsumiY (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21): 18619–18625

DOI PMID

52
KumanomidouT, MizushimaT, KomatsuM, SuzukiA, TanidaI, SouY S, UenoT, KominamiE, TanakaK, YamaneT (2006). The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol, 355(4): 612–618

DOI PMID

53
KumetaH, WatanabeM, NakatogawaH, YamaguchiM, OguraK, AdachiW, FujiokaY, NodaN N, OhsumiY, InagakiF (2010). The NMR structure of the autophagy-related protein Atg8. J Biomol NMR, 47(3): 237–241

DOI PMID

54
LambC A, YoshimoriT, ToozeS A (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14(12): 759–774

DOI PMID

55
LiX, HeL, CheK H, FunderburkS F, PanL, PanN, ZhangM, YueZ, ZhaoY (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun, 3: 662

DOI PMID

56
LiangX H, JacksonS, SeamanM, BrownK, KempkesB, HibshooshH, LevineB (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762): 672–676

DOI PMID

57
LiangX H, KleemanL K, JiangH H, GordonG, GoldmanJ E, BerryG, HermanB, LevineB (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596

PMID

134
LipatovaZ, BelogortsevaN, ZhangX Q, KimJ, TaussigD, SegevN (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A, 109: 6981–6986

58
LiuK, CzajaM J (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 20(1): 3–11

DOI PMID

59
LiuX, DaiS, ZhuY, MarrackP, KapplerJ W (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity, 19(3): 341–352

DOI PMID

60
MaoK, ChewL H, Inoue-AonoY, CheongH, NairU, PopelkaH, YipC K, KlionskyD J (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA, 110(31): E2875–E2884

DOI PMID

61
MatsunagaK, SaitohT, TabataK, OmoriH, SatohT, KurotoriN, MaejimaI, Shirahama-NodaK, IchimuraT, IsobeT, AkiraS, NodaT, YoshimoriT (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396

DOI PMID

62
MatsushitaM, SuzukiN N, ObaraK, FujiokaY, OhsumiY, InagakiF (2007). Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem, 282(9): 6763–6772

DOI PMID

63
MatsuuraA, TsukadaM, WadaY, OhsumiY (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245–250

64
MautheM, JacobA, FreibergerS, HentschelK, StierhofY D, CodognoP, Proikas-CezanneT (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 7(12): 1448–1461

DOI PMID

65
Meiling-WesseK, BarthH, VossC, EskelinenE L, EppleU D, ThummM (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem, 279(36): 37741–37750

DOI PMID

66
MercerC A, KaliappanA, DennisP B (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5): 649–662

DOI PMID

67
MetlagelZ, OtomoC, TakaesuG, OtomoT (2013). Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA, 110(47): 18844–18849

DOI PMID

68
MillerS, TavshanjianB, OleksyA, PerisicO, HousemanB T, ShokatK M, WilliamsR L (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973): 1638–1642

DOI PMID

69
MizushimaN, NodaT, YoshimoriT, TanakaY, IshiiT, GeorgeM D, KlionskyD J, OhsumiM, OhsumiY (1998). A protein conjugation system essential for autophagy. Nature, 395(6700): 395–398

DOI PMID

70
MizushimaN, YoshimoriT, OhsumiY (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132

DOI PMID

71
MoreauK, RavikumarB, RennaM, PuriC, RubinszteinD C (2011). Autophagosome precursor maturation requires homotypic fusion. Cell, 146(2): 303–317

DOI PMID

72
MoreauK, RennaM, RubinszteinD C (2013). Connections between SNAREs and autophagy. Trends Biochem Sci, 38(2): 57–63

DOI PMID

73
NairU, JotwaniA, GengJ, GammohN, RichersonD, YenW L, GriffithJ, NagS, WangK, MossT, BabaM, McNewJ A, JiangX, ReggioriF, MeliaT J, KlionskyD J (2011). SNARE proteins are required for macroautophagy. Cell, 146(2): 290–302

DOI PMID

74
NairU, YenW L, MariM, CaoY, XieZ, BabaM, ReggioriF, KlionskyD J (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5): 780–793

DOI PMID

75
NakatogawaH, IchimuraY, OhsumiY (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130(1): 165–178

DOI PMID

76
NakatogawaH, IshiiJ, AsaiE, OhsumiY (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 8(2): 1–10

DOI PMID

77
NakatogawaH, SuzukiK, KamadaY, OhsumiY (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467

DOI PMID

78
NishimuraT, KaizukaT, CadwellK, SahaniM H, SaitohT, AkiraS, VirginH W, MizushimaN (2013). FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep, 14(3): 284–291

DOI PMID

79
NodaN N, FujiokaY, HanadaT, OhsumiY, InagakiF (2013). Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep, 14(2): 206–211

DOI PMID

80
NodaN N, KobayashiT, AdachiW, FujiokaY, OhsumiY, InagakiF (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem, 287(20): 16256–16266

DOI PMID

81
NodaN N, KumetaH, NakatogawaH, SatooK, AdachiW, IshiiJ, FujiokaY, OhsumiY, InagakiF (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12): 1211–1218

DOI PMID

82
NodaN N, OhsumiY, InagakiF (2009). ATG systems from the protein structural point of view. Chem Rev, 109(4): 1587–1598

DOI PMID

83
NodaN N, SatooK, FujiokaY, KumetaH, OguraK, NakatogawaH, OhsumiY, InagakiF (2011). Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell, 44(3): 462–475

DOI PMID

84
NodaT, KimJ, HuangW P, BabaM, TokunagaC, OhsumiY, KlionskyD J (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148(3): 465–480

DOI PMID

85
NodaT, MatsunagaK, Taguchi-AtarashiN, YoshimoriT (2010). Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol, 21(7): 671–676

DOI PMID

86
ObaraK, NodaT, NiimiK, OhsumiY (2008a). Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells, 13(6): 537–547

DOI PMID

87
ObaraK, SekitoT, NiimiK, OhsumiY (2008b). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem, 283(35): 23972–23980

DOI PMID

88
ObaraK, SekitoT, OhsumiY (2006). Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell, 17(4): 1527–1539

DOI PMID

89
ObersteinA, JeffreyP D, ShiY (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 282(17): 13123–13132

DOI PMID

90
OtomoC, MetlagelZ, TakaesuG, OtomoT (2013). Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 20(1): 59–66

DOI PMID

91
PanaretouC, DominJ, CockcroftS, WaterfieldM D (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase.Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272(4): 2477–2485

DOI PMID

92
PazY, ElazarZ, FassD (2000). Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem, 275(33): 25445–25450

DOI PMID

135
PetrosA M, NettesheimD G, WangY, OlejniczakE T, MeadowsR P, MackJ, SwiftK, MatayoshiE D, ZhangH, ThompsonC B, FesikS W (2010). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci, 9: 2528–2534

93
PolsonH E J, de LartigueJ, RigdenD J, ReedijkM, UrbéS, ClagueM J, ToozeS A (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 6(4): 506–522

DOI PMID

94
Proikas-CezanneT, WaddellS, GaugelA, FrickeyT, LupasA, NordheimA (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325

DOI PMID

95
PuriC, RennaM, BentoC F, MoreauK, RubinszteinD C (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6): 1285–1299

DOI PMID

96
RagusaM J, StanleyR E, HurleyJ H (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151(7): 1501–1512

DOI PMID

97
RavikumarB, MoreauK, JahreissL, PuriC, RubinszteinD C (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 12(8): 747–757

DOI PMID

98
ReggioriF, KlionskyD J (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194(2): 341–361

DOI PMID

99
ReggioriF, TuckerK A, StromhaugP E, KlionskyD J (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6(1): 79–90

DOI PMID

100
RennerL D, WeibelD B (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA, 108(15): 6264–6269

DOI PMID

101
RieterE, VinkeF, BakulaD, CebolleroE, UngermannC, Proikas-CezanneT, ReggioriF (2013). Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci, 126(Pt 2): 593–604

DOI PMID

136
RomanovJ, WalczakM, IbiricuI, SchüchnerS, OgrisE, KraftC, MartensS (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 31: 4304–4317

DOI PMID

102
SattlerM, LiangH, NettesheimD, MeadowsR P, HarlanJ E, EberstadtM, YoonH S, ShukerS B, ChangB S, MinnA J, ThompsonC B, FesikS W (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science, 275: 983–986

102
SatooK, NodaN N, KumetaH, FujiokaY, MizushimaN, OhsumiY, InagakiF (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 28(9): 1341–1350

DOI PMID

103
SchwartenM, StoldtM, MohrlüderJ, WillboldD (2010). Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun, 395(3): 426–431

DOI PMID

104
SeglenP O, GordonP B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892

DOI PMID

105
SekitoT, KawamataT, IchikawaR, SuzukiK, OhsumiY (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14(5): 525–538

DOI PMID

106
SironiL, MapelliM, KnappS, De AntoniA, JeangK T, MusacchioA (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 21(10): 2496–2506

DOI PMID

107
StrϕmhaugP E, ReggioriF, GuanJ, WangC W, KlionskyD J (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell, 15(8): 3553–3566

DOI PMID

108
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 9(7): 611–618

DOI PMID

109
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem, 280(48): 40058–40065

DOI PMID

110
SunL L, LiM, SuoF, LiuX M, ShenE Z, YangB, DongM Q, HeW Z, DuL L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet, 9(8): e1003715

DOI PMID

111
SuzukiK (2013). Selective autophagy in budding yeast. Cell Death Differ, 20(1): 43–48

DOI PMID

112
SuzukiK, KubotaY, SekitoT, OhsumiY (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218

DOI PMID

113
SuzukiK, OhsumiY (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11): 2156–2161

DOI PMID

114
SuzukiN N, YoshimotoK, FujiokaY, OhsumiY, InagakiF (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy, 1(2): 119–126

DOI PMID

115
TaherbhoyA M, TaitS W, KaiserS E, WilliamsA H, DengA, NourseA, HammelM, KurinovI, RockC O, GreenD R, SchulmanB A (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 44(3): 451–461

DOI PMID

116
TakeshigeK, BabaM, TsuboiS, NodaT, OhsumiY (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2): 301–311

DOI PMID

117
TsukadaM, OhsumiY (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2): 169–174

DOI PMID

118
WatanabeY, KobayashiT, YamamotoH, HoshidaH, AkadaR, InagakiF, OhsumiY, NodaN N (2012). Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem, 287(38): 31681–31690

DOI PMID

119
WeidbergH, ShpilkaT, ShvetsE, AbadaA, ShimronF, ElazarZ (2011a). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454

DOI PMID

120
WeidbergH, ShvetsE, ElazarZ (2011b). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem, 80(1): 125–156

DOI PMID

121
WeidbergH, ShvetsE, ShpilkaT, ShimronF, ShinderV, ElazarZ (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J, 29(11): 1792–1802

DOI PMID

122
WuY T, TanH L, ShuiG, BauvyC, HuangQ, WenkM R, OngC N, CodognoP, ShenH M (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 285(14): 10850–10861

DOI PMID

123
XieZ, NairU, KlionskyD J (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 19(8): 3290–3298

DOI PMID

124
YamadaY, SuzukiN N, HanadaT, IchimuraY, KumetaH, FujiokaY, OhsumiY, InagakiF (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem, 282(11): 8036–8043

DOI PMID

125
YamaguchiM, MatobaK, SawadaR, FujiokaY, NakatogawaH, YamamotoH, KobashigawaY, HoshidaH, AkadaR, OhsumiY, NodaN N, InagakiF (2012a). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol, 19(12): 1250–1256

DOI PMID

126
YamaguchiM, NodaN N, NakatogawaH, KumetaH, OhsumiY, InagakiF (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem, 285(38): 29599–29607

DOI PMID

127
YamaguchiM, NodaN N, YamamotoH, ShimaT, KumetaH, KobashigawaY, AkadaR, OhsumiY, InagakiF (2012b). Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure, 20(7): 1244–1254

DOI PMID

128
YamamotoH, KakutaS, WatanabeT M, KitamuraA, SekitoT, Kondo-KakutaC, IchikawaR, KinjoM, OhsumiY (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2): 219–233

DOI PMID

138
YehY Y, ShahK H, ChouC C, HsiaoH H, WrasmanK M, StephanJ S, StamatakosD, KhooK H, HermanP K (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy, 7: 716–726

129
Ylä-AnttilaP, VihinenH, JokitaloE, EskelinenE L (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 5(8): 1180–1185

DOI PMID

130
YuZ Q, NiT, HongB, WangH Y, JiangF J, ZouS, ChenY, ZhengX L, KlionskyD J, LiangY, XieZ (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy, 8(6): 1–10

DOI PMID

131
ZhongY, WangQ J, LiX, YanY, BackerJ M, ChaitB T, HeintzN, YueZ (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476

DOI PMID

Outlines

/