Received date: 01 Oct 2013
Accepted date: 22 Dec 2013
Published date: 01 Feb 2014
Copyright
Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.
Leon H. CHEW , Calvin K. YIP . Structural biology of the macroautophagy machinery[J]. Frontiers in Biology, 2014 , 9(1) : 18 -34 . DOI: 10.1007/s11515-014-1293-3
1 |
AitaV M, LiangX H, MurtyV V, PincusD L, YuW, CayanisE, KalachikovS, GilliamT C, LevineB (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1): 59–65
|
2 |
ArakiY, KuW C, AkiokaM, MayA I, HayashiY, ArisakaF, IshihamaY, OhsumiY (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol, 203(2): 299–313
|
3 |
AshrafiG, SchwarzT L (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1): 31–42
|
4 |
AxeE L, WalkerS A, ManifavaM, ChandraP, RoderickH L, HabermannA, GriffithsG, KtistakisN T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701
|
5 |
BaskaranS, RagusaM J, BouraE, HurleyJ H (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell, 47(3): 339–348
|
6 |
BirgisdottirA B, LamarkT, JohansenT (2013). The LIR motif- crucial for selective autophagy. J Cell Sci, 126(Pt 15): 3237–3247
|
7 |
BurdaP, PadillaS M, SarkarS, EmrS D (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci, 115(Pt 20): 3889–3900
|
8 |
ChanE Y W, LongattiA, McKnightN C, ToozeS A (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol, 29(1): 157–171
|
9 |
CheongH, NairU, GengJ, KlionskyD J (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2): 668–681
|
10 |
CheongH, YorimitsuT, ReggioriF, LegakisJ E, WangC W, KlionskyD J (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7): 3438–3453
|
132 |
ChewL H, SetiaputraD, KlionskyD J, YipC K (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy, 9: 1467–1474
|
11 |
ChoiA M K, RyterS W, LevineB (2013). Autophagy in human health and disease. N Engl J Med, 368(7): 651–662
|
12 |
CoyleJ E, QamarS, RajashankarK R, NikolovD B (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 33(1): 63–74
|
13 |
DoveS K, PiperR C, McEwenR K, YuJ W, KingM C, HughesD C, ThuringJ, HolmesA B, CookeF T, MichellR H, ParkerP J, LemmonM A (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J, 23(9): 1922–1933
|
14 |
FanW, NassiriA, ZhongQ (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA, 108(19): 7769–7774
|
15 |
FengW, HuangS, WuH, ZhangM (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 372(1): 223–235
|
16 |
FogelA I, DlouhyB J, WangC, RyuS W, NeutznerA, HassonS A, SiderisD P, AbeliovichH, YouleR J (2013). Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 33(18): 3675–3688
|
17 |
FujiokaY, NodaN N, NakatogawaH, OhsumiY, InagakiF (2010). Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 285(2): 1508–1515
|
18 |
FuruyaN, YuJ, ByfieldM, PattingreS, LevineB (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1): 46–52
|
19 |
GammohN, FloreyO, OverholtzerM, JiangX (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149
|
20 |
GanleyI G, LamH, WangJ, DingX, ChenS, JiangX (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305
|
21 |
GaugelA, BakulaD, HoffmannA, Proikas-CezanneT (2012). Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J Mol Signal, 7(1): 16
|
22 |
HaileyD W, RamboldA S, Satpute-KrishnanP, MitraK, SougratR, KimP K, Lippincott-SchwartzJ (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4): 656–667
|
23 |
HamasakiM, FurutaN, MatsudaA, NezuA, YamamotoA, FujitaN, OomoriH, NodaT, HaraguchiT, HiraokaY, AmanoA, YoshimoriT (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441): 389–393
|
24 |
Hayashi-NishinoM, FujitaN, NodaT, YamaguchiA, YoshimoriT, YamamotoA (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12): 1433–1437
|
25 |
HeenanE J, VanhookeJ L, TempleB R, BettsL, SondekJ E, DohlmanH G (2009). Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry, 48(27): 6390–6401
|
26 |
HongS B, KimB W, KimJ H, SongH K (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr, 68(Pt 10): 1409–1417
|
27 |
HongS B, KimB W, LeeK E, KimS W, JeonH, KimJ, SongH K (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol, 18(12): 1323–1330
|
28 |
HosokawaN, SasakiT, IemuraS, NatsumeT, HaraT, MizushimaN (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7): 973–979
|
29 |
HuangW, ChoiW, HuW, MiN, GuoQ, MaM, LiuM, TianY, LuP, WangF L, DengH, LiuL, GaoN, YuL, ShiY (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res, 22(3): 473–489
|
30 |
IchimuraY, KirisakoT, TakaoT, SatomiY, ShimonishiY, IshiharaN, MizushimaN, TanidaI, KominamiE, OhsumiM, NodaT, OhsumiY (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811): 488–492
|
31 |
ItakuraE, KishiC, InoueK, MizushimaN (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12): 5360–5372
|
32 |
JaoC C, RagusaM J, StanleyR E, HurleyJ H (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci USA, 110(14): 5486–5491
|
33 |
KabeyaY, KamadaY, BabaM, TakikawaH, SasakiM, OhsumiY (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell, 16(5): 2544–2553
|
34 |
KabeyaY, MizushimaN, YamamotoA, Oshitani-OkamotoS, OhsumiY, YoshimoriT (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 117(Pt 13): 2805–2812
|
133 |
KabeyaY, MizushimaN, UenoT, YamamotoA, KirisakoT, NodaT, KominamiE, OhsumiY, YoshimoriT (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19: 5720–5728
|
35 |
KabeyaY, NodaN N, FujiokaY, SuzukiK, InagakiF, OhsumiY (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 389(4): 612–615
|
36 |
KaiserS E, MaoK, TaherbhoyA M, YuS, OlszewskiJ L, DudaD M, KurinovI, DengA, FennT D, KlionskyD J, SchulmanB A (2012). Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 19(12): 1242–1249
|
37 |
KakutaS, YamamotoH, NegishiL, Kondo-KakutaC, HayashiN, OhsumiY (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem, 287(53): 44261–44269
|
38 |
KamadaY, FunakoshiT, ShintaniT, NaganoK, OhsumiM, OhsumiY (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150(6): 1507–1513
|
39 |
KaranasiosE, StapletonE, ManifavaM, KaizukaT, MizushimaN, WalkerS A, KtistakisN T (2013). Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 126(Pt 22): 5224–5238
|
40 |
KiharaA, NodaT, IshiharaN, OhsumiY (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519–30
|
41 |
KijanskaM, DohnalI, ReiterW, KasparS, StoffelI, AmmererG, KraftC, PeterM (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 6(8): 1168–1178
|
42 |
KimJ, KunduM, ViolletB, GuanK L (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141
|
43 |
KnightD, HarrisR, McAlisterM S B, PhelanJ P, GeddesS, MossS J, DriscollP C, KeepN H (2002). The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem, 277(7): 5556–5561
|
44 |
KobayashiT, SuzukiK, OhsumiY (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett, 586(16): 2473–2478
|
45 |
Kondo-OkamotoN, NodaN N, SuzukiS W, NakatogawaH, TakahashiI, MatsunamiM, HashimotoA, InagakiF, OhsumiY, OkamotoK (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem, 287(13): 10631–10638
|
46 |
KraftC, DeplazesA, SohrmannM, PeterM (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610
|
47 |
KraftC, KijanskaM, KalieE, SiergiejukE, LeeS S, SemplicioG, StoffelI, BrezovichA, VermaM, HansmannI, AmmererG, HofmannK, ToozeS, PeterM (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J, 31(18): 3691–3703
|
48 |
KrickR, BusseR A, ScaciocA, StephanM, JanshoffA, ThummM, KühnelK (2012). Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA, 109(30): E2042–E2049
|
49 |
KrickR, MueheY, PrickT, BremerS, SchlotterhoseP, EskelinenE L, MillenJ, GoldfarbD S, ThummM (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell, 19(10): 4492–4505
|
50 |
KuB, WooJ S, LiangC, LeeK H, HongH S, eX, KimK S, JungJ U, OhB H (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog, 4(2): e25
|
51 |
KumaA, MizushimaN, IshiharaN, OhsumiY (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21): 18619–18625
|
52 |
KumanomidouT, MizushimaT, KomatsuM, SuzukiA, TanidaI, SouY S, UenoT, KominamiE, TanakaK, YamaneT (2006). The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol, 355(4): 612–618
|
53 |
KumetaH, WatanabeM, NakatogawaH, YamaguchiM, OguraK, AdachiW, FujiokaY, NodaN N, OhsumiY, InagakiF (2010). The NMR structure of the autophagy-related protein Atg8. J Biomol NMR, 47(3): 237–241
|
54 |
LambC A, YoshimoriT, ToozeS A (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14(12): 759–774
|
55 |
LiX, HeL, CheK H, FunderburkS F, PanL, PanN, ZhangM, YueZ, ZhaoY (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun, 3: 662
|
56 |
LiangX H, JacksonS, SeamanM, BrownK, KempkesB, HibshooshH, LevineB (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762): 672–676
|
57 |
LiangX H, KleemanL K, JiangH H, GordonG, GoldmanJ E, BerryG, HermanB, LevineB (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596
|
134 |
LipatovaZ, BelogortsevaN, ZhangX Q, KimJ, TaussigD, SegevN (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A, 109: 6981–6986
|
58 |
LiuK, CzajaM J (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 20(1): 3–11
|
59 |
LiuX, DaiS, ZhuY, MarrackP, KapplerJ W (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity, 19(3): 341–352
|
60 |
MaoK, ChewL H, Inoue-AonoY, CheongH, NairU, PopelkaH, YipC K, KlionskyD J (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA, 110(31): E2875–E2884
|
61 |
MatsunagaK, SaitohT, TabataK, OmoriH, SatohT, KurotoriN, MaejimaI, Shirahama-NodaK, IchimuraT, IsobeT, AkiraS, NodaT, YoshimoriT (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396
|
62 |
MatsushitaM, SuzukiN N, ObaraK, FujiokaY, OhsumiY, InagakiF (2007). Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem, 282(9): 6763–6772
|
63 |
MatsuuraA, TsukadaM, WadaY, OhsumiY (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245–250
|
64 |
MautheM, JacobA, FreibergerS, HentschelK, StierhofY D, CodognoP, Proikas-CezanneT (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 7(12): 1448–1461
|
65 |
Meiling-WesseK, BarthH, VossC, EskelinenE L, EppleU D, ThummM (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem, 279(36): 37741–37750
|
66 |
MercerC A, KaliappanA, DennisP B (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5): 649–662
|
67 |
MetlagelZ, OtomoC, TakaesuG, OtomoT (2013). Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA, 110(47): 18844–18849
|
68 |
MillerS, TavshanjianB, OleksyA, PerisicO, HousemanB T, ShokatK M, WilliamsR L (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973): 1638–1642
|
69 |
MizushimaN, NodaT, YoshimoriT, TanakaY, IshiiT, GeorgeM D, KlionskyD J, OhsumiM, OhsumiY (1998). A protein conjugation system essential for autophagy. Nature, 395(6700): 395–398
|
70 |
MizushimaN, YoshimoriT, OhsumiY (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132
|
71 |
MoreauK, RavikumarB, RennaM, PuriC, RubinszteinD C (2011). Autophagosome precursor maturation requires homotypic fusion. Cell, 146(2): 303–317
|
72 |
MoreauK, RennaM, RubinszteinD C (2013). Connections between SNAREs and autophagy. Trends Biochem Sci, 38(2): 57–63
|
73 |
NairU, JotwaniA, GengJ, GammohN, RichersonD, YenW L, GriffithJ, NagS, WangK, MossT, BabaM, McNewJ A, JiangX, ReggioriF, MeliaT J, KlionskyD J (2011). SNARE proteins are required for macroautophagy. Cell, 146(2): 290–302
|
74 |
NairU, YenW L, MariM, CaoY, XieZ, BabaM, ReggioriF, KlionskyD J (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5): 780–793
|
75 |
NakatogawaH, IchimuraY, OhsumiY (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130(1): 165–178
|
76 |
NakatogawaH, IshiiJ, AsaiE, OhsumiY (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 8(2): 1–10
|
77 |
NakatogawaH, SuzukiK, KamadaY, OhsumiY (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467
|
78 |
NishimuraT, KaizukaT, CadwellK, SahaniM H, SaitohT, AkiraS, VirginH W, MizushimaN (2013). FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep, 14(3): 284–291
|
79 |
NodaN N, FujiokaY, HanadaT, OhsumiY, InagakiF (2013). Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep, 14(2): 206–211
|
80 |
NodaN N, KobayashiT, AdachiW, FujiokaY, OhsumiY, InagakiF (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem, 287(20): 16256–16266
|
81 |
NodaN N, KumetaH, NakatogawaH, SatooK, AdachiW, IshiiJ, FujiokaY, OhsumiY, InagakiF (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12): 1211–1218
|
82 |
NodaN N, OhsumiY, InagakiF (2009). ATG systems from the protein structural point of view. Chem Rev, 109(4): 1587–1598
|
83 |
NodaN N, SatooK, FujiokaY, KumetaH, OguraK, NakatogawaH, OhsumiY, InagakiF (2011). Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell, 44(3): 462–475
|
84 |
NodaT, KimJ, HuangW P, BabaM, TokunagaC, OhsumiY, KlionskyD J (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148(3): 465–480
|
85 |
NodaT, MatsunagaK, Taguchi-AtarashiN, YoshimoriT (2010). Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol, 21(7): 671–676
|
86 |
ObaraK, NodaT, NiimiK, OhsumiY (2008a). Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells, 13(6): 537–547
|
87 |
ObaraK, SekitoT, NiimiK, OhsumiY (2008b). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem, 283(35): 23972–23980
|
88 |
ObaraK, SekitoT, OhsumiY (2006). Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell, 17(4): 1527–1539
|
89 |
ObersteinA, JeffreyP D, ShiY (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 282(17): 13123–13132
|
90 |
OtomoC, MetlagelZ, TakaesuG, OtomoT (2013). Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 20(1): 59–66
|
91 |
PanaretouC, DominJ, CockcroftS, WaterfieldM D (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase.Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272(4): 2477–2485
|
92 |
PazY, ElazarZ, FassD (2000). Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem, 275(33): 25445–25450
|
135 |
PetrosA M, NettesheimD G, WangY, OlejniczakE T, MeadowsR P, MackJ, SwiftK, MatayoshiE D, ZhangH, ThompsonC B, FesikS W (2010). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci, 9: 2528–2534
|
93 |
PolsonH E J, de LartigueJ, RigdenD J, ReedijkM, UrbéS, ClagueM J, ToozeS A (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 6(4): 506–522
|
94 |
Proikas-CezanneT, WaddellS, GaugelA, FrickeyT, LupasA, NordheimA (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325
|
95 |
PuriC, RennaM, BentoC F, MoreauK, RubinszteinD C (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6): 1285–1299
|
96 |
RagusaM J, StanleyR E, HurleyJ H (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151(7): 1501–1512
|
97 |
RavikumarB, MoreauK, JahreissL, PuriC, RubinszteinD C (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 12(8): 747–757
|
98 |
ReggioriF, KlionskyD J (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194(2): 341–361
|
99 |
ReggioriF, TuckerK A, StromhaugP E, KlionskyD J (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6(1): 79–90
|
100 |
RennerL D, WeibelD B (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA, 108(15): 6264–6269
|
101 |
RieterE, VinkeF, BakulaD, CebolleroE, UngermannC, Proikas-CezanneT, ReggioriF (2013). Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci, 126(Pt 2): 593–604
|
136 |
RomanovJ, WalczakM, IbiricuI, SchüchnerS, OgrisE, KraftC, MartensS (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 31: 4304–4317
|
102 |
SattlerM, LiangH, NettesheimD, MeadowsR P, HarlanJ E, EberstadtM, YoonH S, ShukerS B, ChangB S, MinnA J, ThompsonC B, FesikS W (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science, 275: 983–986
|
102 |
SatooK, NodaN N, KumetaH, FujiokaY, MizushimaN, OhsumiY, InagakiF (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 28(9): 1341–1350
|
103 |
SchwartenM, StoldtM, MohrlüderJ, WillboldD (2010). Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun, 395(3): 426–431
|
104 |
SeglenP O, GordonP B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892
|
105 |
SekitoT, KawamataT, IchikawaR, SuzukiK, OhsumiY (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14(5): 525–538
|
106 |
SironiL, MapelliM, KnappS, De AntoniA, JeangK T, MusacchioA (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 21(10): 2496–2506
|
107 |
StrϕmhaugP E, ReggioriF, GuanJ, WangC W, KlionskyD J (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell, 15(8): 3553–3566
|
108 |
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 9(7): 611–618
|
109 |
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem, 280(48): 40058–40065
|
110 |
SunL L, LiM, SuoF, LiuX M, ShenE Z, YangB, DongM Q, HeW Z, DuL L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet, 9(8): e1003715
|
111 |
SuzukiK (2013). Selective autophagy in budding yeast. Cell Death Differ, 20(1): 43–48
|
112 |
SuzukiK, KubotaY, SekitoT, OhsumiY (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218
|
113 |
SuzukiK, OhsumiY (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11): 2156–2161
|
114 |
SuzukiN N, YoshimotoK, FujiokaY, OhsumiY, InagakiF (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy, 1(2): 119–126
|
115 |
TaherbhoyA M, TaitS W, KaiserS E, WilliamsA H, DengA, NourseA, HammelM, KurinovI, RockC O, GreenD R, SchulmanB A (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 44(3): 451–461
|
116 |
TakeshigeK, BabaM, TsuboiS, NodaT, OhsumiY (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2): 301–311
|
117 |
TsukadaM, OhsumiY (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2): 169–174
|
118 |
WatanabeY, KobayashiT, YamamotoH, HoshidaH, AkadaR, InagakiF, OhsumiY, NodaN N (2012). Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem, 287(38): 31681–31690
|
119 |
WeidbergH, ShpilkaT, ShvetsE, AbadaA, ShimronF, ElazarZ (2011a). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454
|
120 |
WeidbergH, ShvetsE, ElazarZ (2011b). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem, 80(1): 125–156
|
121 |
WeidbergH, ShvetsE, ShpilkaT, ShimronF, ShinderV, ElazarZ (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J, 29(11): 1792–1802
|
122 |
WuY T, TanH L, ShuiG, BauvyC, HuangQ, WenkM R, OngC N, CodognoP, ShenH M (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 285(14): 10850–10861
|
123 |
XieZ, NairU, KlionskyD J (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 19(8): 3290–3298
|
124 |
YamadaY, SuzukiN N, HanadaT, IchimuraY, KumetaH, FujiokaY, OhsumiY, InagakiF (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem, 282(11): 8036–8043
|
125 |
YamaguchiM, MatobaK, SawadaR, FujiokaY, NakatogawaH, YamamotoH, KobashigawaY, HoshidaH, AkadaR, OhsumiY, NodaN N, InagakiF (2012a). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol, 19(12): 1250–1256
|
126 |
YamaguchiM, NodaN N, NakatogawaH, KumetaH, OhsumiY, InagakiF (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem, 285(38): 29599–29607
|
127 |
YamaguchiM, NodaN N, YamamotoH, ShimaT, KumetaH, KobashigawaY, AkadaR, OhsumiY, InagakiF (2012b). Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure, 20(7): 1244–1254
|
128 |
YamamotoH, KakutaS, WatanabeT M, KitamuraA, SekitoT, Kondo-KakutaC, IchikawaR, KinjoM, OhsumiY (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2): 219–233
|
138 |
YehY Y, ShahK H, ChouC C, HsiaoH H, WrasmanK M, StephanJ S, StamatakosD, KhooK H, HermanP K (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy, 7: 716–726
|
129 |
Ylä-AnttilaP, VihinenH, JokitaloE, EskelinenE L (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 5(8): 1180–1185
|
130 |
YuZ Q, NiT, HongB, WangH Y, JiangF J, ZouS, ChenY, ZhengX L, KlionskyD J, LiangY, XieZ (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy, 8(6): 1–10
|
131 |
ZhongY, WangQ J, LiX, YanY, BackerJ M, ChaitB T, HeintzN, YueZ (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476
|
/
〈 | 〉 |