REVIEW

The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors

  • Michael S. FLEMING ,
  • Wenqin LUO
Expand
  • Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA

Received date: 26 Apr 2013

Accepted date: 19 Jun 2013

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner’s corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.

Cite this article

Michael S. FLEMING , Wenqin LUO . The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors[J]. Frontiers in Biology, 2013 , 8(4) : 408 -420 . DOI: 10.1007/s11515-013-1271-1

1
Abdo H, Li L, Lallemend F, Bachy I, Xu X J, Rice F L, Ernfors P (2011). Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. Eur J Neurosci, 34(10): 1529–1541

DOI PMID

2
Airaksinen M S, Koltzenburg M, Lewin G R, Masu Y, Helbig C, Wolf E, Brem G, Toyka K V, Thoenen H, Meyer M (1996). Specific subtypes of cutaneous mechanoreceptors require neurotrophin-3 following peripheral target innervation. Neuron, 16(2): 287–295

DOI PMID

3
Albrecht F L R P J (2008). Cutaneous Mechanisms of Tactile Perception: Morphological and Chemical Organization of the Innervation to the Skin. The Senses: A Comprehensive Reference. San Diego, Academic Press. 6: 1-32.

4
Bell J, Bolanowski S, Holmes M H (1994). The structure and function of Pacinian corpuscles: a review. Prog Neurobiol, 42(1): 79–128

DOI PMID

5
Bentivoglio M, Pacini P (1995). Filippo Pacini: a determined observer. Brain Res Bull, 38(2): 161–165

DOI PMID

6
Biemesderfer D, Munger B L, Binck J, Dubner R (1978). The pilo-Ruffini complex: a non-sinus hair and associated slowly-adapting mechanoreceptor in primate facial skin. Brain Res, 142(2): 197–222

DOI PMID

7
Boulais N, Misery L (2007). Merkel cells. J Am Acad Dermatol, 57(1): 147–165

DOI PMID

8
Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, Puech S, Boukhaddaoui H, Baudet C, Takahashi S, Valmier J, Carroll P (2009). Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron, 64(6): 857–870

DOI PMID

9
Brisben A J, Hsiao S S, Johnson K O (1999). Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol, 81(4): 1548–1558

PMID

10
Brown A G (1981). Organization in the spinal cord: the anatomy and physiology of identified neurones. Berlin; New York, Springer-Verlag

11
Brown A G, Fyffe R E, Noble R (1980). Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat’s spinal cord. J Physiol, 307: 385–400

PMID

12
Burgess P R P E.R. (1973). Cutaneious mechanoreceptors and nociceptors. Handbook of Sensory Physiology. A. Iggo. Berlin, Springer. 11:29–78

13
Byers M R (1985). Sensory innervation of periodontal ligament of rat molars consists of unencapsulated Ruffini-like mechanoreceptors and free nerve endings. J Comp Neurol, 231(4): 500–518

DOI PMID

14
Calavia M G, Feito J, López-Iglesias L, de Carlos F, García-Suarez O, Pérez-Piñera P, Cobo J, Vega J A (2010). The lamellar cells in human Meissner corpuscles express TrkB. Neurosci Lett, 468(2): 106–109

DOI PMID

15
Carroll P, Lewin G R, Koltzenburg M, Toyka K V, Thoenen H (1998). A role for BDNF in mechanosensation. Nat Neurosci, 1(1): 42–46

DOI PMID

16
Cauna N (1956). Nerve supply and nerve endings in Meissner’s corpuscles. Am J Anat, 99(2): 315–350

DOI PMID

17
Cauna N, Mannan G (1958). The structure of human digital pacinian corpuscles (corpus cula lamellosa) and its functional significance. J Anat, 92(1): 1–20

PMID

18
Cauna N, Ross L L (1960). The fine structure of Meissner’s touch corpuscles of human fingers. J Biophys Biochem Cytol, 8(2): 467–482

DOI PMID

19
Chambers M R, Andres K H, von Duering M, Iggo A (1972). The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q J Exp Physiol Cogn Med Sci, 57(4): 417–445

PMID

20
Cronk K M, Wilkinson G A, Grimes R, Wheeler E F, Jhaveri S, Fundin B T, Silos-Santiago I, Tessarollo L, Reichardt L F, Rice F L (2002). Diverse dependencies of developing Merkel innervation on the trkA and both full-length and truncated isoforms of trkC. Development, 129(15): 3739–3750

PMID

21
Diamond J, Mills L R, Mearow K M (1988). Evidence that the Merkel cell is not the transducer in the mechanosensory Merkel cell-neurite complex. Prog Brain Res, 74: 51–56

DOI PMID

22
English K B, Burgess P R, Kavka-Van Norman D (1980). Development of rat Merkel cells. J Comp Neurol, 194(2): 475–496

DOI PMID

23
Fagan B M, Cahusac P M (2001). Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport, 12(2): 341–347

DOI PMID

24
Fundin B T, Silos-Santiago I, Ernfors P, Fagan A M, Aldskogius H, DeChiara T M, Phillips H S, Barbacid M, Yancopoulos G D, Rice F L (1997). Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Dev Biol, 190(1): 94–116

DOI PMID

25
Gardner E P, Palmer C I (1990). Simulation of motion on the skin. III. Mechanisms used by rapidly adapting cutaneous mechanoreceptors in the primate hand for spatiotemporal resolution and two-point discrimination. J Neurophysiol, 63(4): 841–859

PMID

26
González-Martínez T, Fariñas I, Del Valle M E, Feito J, Germanà G, Cobo J, Vega J A (2005). BDNF, but not NT-4, is necessary for normal development of Meissner corpuscles. Neurosci Lett, 377(1): 12–15

DOI PMID

27
González-Martínez T, Germanà G P, Monjil D F, Silos-Santiago I, de Carlos F, Germanà G, Cobo J, Vega J A (2004). Absence of Meissner corpuscles in the digital pads of mice lacking functional TrkB. Brain Res, 1002(1-2): 120–128

DOI PMID

28
Gottschaldt K M, Iggo A, Young D W (1973). Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol, 235(2): 287–315

PMID

29
Gottschaldt K M, Vahle-Hinz C (1981). Merkel cell receptors: structure and transducer function. Science, 214(4517): 183–186

DOI PMID

30
Grim M, Halata Z (2000). Developmental origin of avian Merkel cells. Anat Embryol (Berl), 202(5): 401–410

DOI PMID

31
Haeberle H, Fujiwara M, Chuang J, Medina M M, Panditrao M V, Bechstedt S, Howard J, Lumpkin E A (2004). Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA, 101(40): 14503–14508

DOI PMID

32
Halata Z (1977). The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles). J Anat, 124(Pt 3): 717–729

PMID

33
Halata Z, Grim M, Bauman K I (2003). Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. Anat Rec A Discov Mol Cell Evol Biol, 271(1): 225–239

DOI PMID

34
Halata Z, Munger B L (1980). The sensory innervation of primate eyelid. Anat Rec, 198(4): 657–670

DOI PMID

35
Halata Z, Munger B L (1980). Sensory nerve endings in rhesus monkey sinus hairs. J Comp Neurol, 192(4): 645–663

DOI PMID

36
Heidenreich M, Lechner S G, Vardanyan V, Wetzel C, Cremers C W, De Leenheer E M, Aránguez G, Moreno-Pelayo M Á, Jentsch T J, Lewin G R (2012). KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci, 15(1): 138–145

DOI PMID

37
Hoggan G, Hoggan F E (1893). Forked Nerve Endings on Hairs. J Anat Physiol, 27(Pt 2): 224–231

38
Honma Y, Kawano M, Kohsaka S, Ogawa M (2010). Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development, 137(14): 2319–2328

DOI PMID

39
Hoshino N, Harada F, Alkhamrah B A, Aita M, Kawano Y, Hanada K, Maeda T (2003). Involvement of brain-derived neurotrophic factor (BDNF) in the development of periodontal Ruffini endings. Anat Rec A Discov Mol Cell Evol Biol, 274(1): 807–816

DOI PMID

40
Hu J, Huang T, Li T, Guo Z, Cheng L (2012). c-Maf is required for the development of dorsal horn laminae III/IV neurons and mechanoreceptive DRG axon projections. J Neurosci, 32(16): 5362–5373

41
Hubbard S J (1958). A study of rapid mechanical events in a mechanoreceptor. J Physiol, 141(2): 198–218

PMID

42
Hunt C C (1961). On the nature of vibration receptors in the hind limb of the cat. J Physiol, 155: 175–186

PMID

43
Iggo A (1985). Sensory receptors in the skin of mammals and their sensory functions. Rev Neurol (Paris), 141(10): 599–613

PMID

44
Iggo A, Andres K H (1982). Morphology of cutaneous receptors. Annu Rev Neurosci, 5(1): 1–31

DOI PMID

45
Iggo A, Muir A R (1969). The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol, 200(3): 763–796

PMID

46
Iggo A, Ogawa H (1977). Correlative physiological and morphological studies of rapidly adapting mechanoreceptors in cat’s glabrous skin. J Physiol, 266(2): 275–296

PMID

47
Ikeda I, Yamashita Y, Ono T, Ogawa H (1994). Selective phototoxic destruction of rat Merkel cells abolishes responses of slowly adapting type I mechanoreceptor units. J Physiol, 479(Pt 2): 247–256

PMID

48
Johansson R S, Vallbo A B (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol, 286: 283–300

PMID

49
Johnson K O (2001). The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol, 11(4): 455–461

DOI PMID

50
Johnson K O, Yoshioka T, Vega-Bermudez F (2000). Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol, 17(6): 539–558

DOI PMID

51
Kinkelin I, Stucky C L, Koltzenburg M (1999). Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. Eur J Neurosci, 11(11): 3963–3969

DOI PMID

52
Knibestöl M (1973). Stimulus-response functions of rapidly adapting mechanoreceptors in human glabrous skin area. J Physiol, 232(3): 427–452

PMID

53
Kramer I, Sigrist M, de Nooij J C, Taniuchi I, Jessell T M, Arber S (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron, 49(3): 379–393

DOI PMID

54
Krimm R F, Davis B M, Noel T, Albers K M (2006). Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number. J Comp Neurol, 498(4): 455–465

DOI PMID

55
LeMaster A M, Krimm R F, Davis B M, Noel T, Forbes M E, Johnson J E, Albers K M (1999). Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci, 19(14): 5919–5931

PMID

56
Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J, 21(13): 3454–3463

DOI PMID

57
Li L, Rutlin M, Abraira V E, Cassidy C, Kus L, Gong S, Jankowski M P, Luo W, Heintz N, Koerber H R, Woodbury C J, Ginty D D (2011). The functional organization of cutaneous low-threshold mechanosensory neurons. Cell, 147(7): 1615–1627

DOI PMID

58
Loewenstein W R, Mendelson M (1965). Components of Receptor Adaptation in a Pacinian Corpuscle. J Physiol, 177: 377–397

PMID

59
Lou S, Duan B, Vong L, Lovell B B, Ma Q (2013). Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci, 33(3): 870–882

60
Lucarz A, Brand G (2007). Current considerations about Merkel cells. Eur J Cell Biol, 86(5): 243–251

DOI PMID

61
Luo W, Enomoto H, Rice F L, Milbrandt J, Ginty D D (2009). Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron, 64(6): 841–856

DOI PMID

62
Maklad A, Conway M, Hodges C, Hansen L A (2010). Development of innervation to maxillary whiskers in mice. Anat Rec (Hoboken), 293(9): 1553–1567

DOI PMID

63
Maksimovic S, Baba Y, Lumpkin E A (2013). Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci, 1279(1): 13–21

DOI PMID

64
Maricich S M, Morrison K M, Mathes E L, Brewer B M (2012). Rodents rely on Merkel cells for texture discrimination tasks. J Neurosci, 32(10): 3296–3300

DOI PMID

65
Maricich S M, Wellnitz S A, Nelson A M, Lesniak D R, Gerling G J, Lumpkin E A, Zoghbi H Y (2009). Merkel cells are essential for light-touch responses. Science, 324(5934): 1580–1582

DOI PMID

66
Maruyama Y, Harada F, Jabbar S, Saito I, Aita M, Kawano Y, Suzuki A, Nozawa-Inoue K, Maeda T (2005). Neurotrophin-4/5-depletion induces a delay in maturation of the periodontal Ruffini endings in mice. Arch Histol Cytol, 68(4): 267–288

DOI PMID

67
Matsuo S, Ichikawa H, Silos-Santiago I, Kiyomiya K, Kurebe M, Arends J J, Jacquin M F (2002). Ruffini endings are absent from the periodontal ligament of trkB knockout mice. Somatosens Mot Res, 19(3): 213–217

DOI PMID

68
Mendelson M, Lowenstein W R (1964). Mechanisms of Receptor Adaptation. Science, 144(3618): 554–555

DOI PMID

69
Merkel F (1875). Tastzellen and Tastkoerperchen bei den Hausthieren und beim Menschen. Arch Mikrosc Anat, 11(S1): 636–652

DOI

70
Montaño J A, Pérez-Piñera P, García-Suárez O, Cobo J, Vega J A (2010). Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech, 73(5): 513–529

PMID

71
Morrison K M, Miesegaes G R, Lumpkin E A, Maricich S M (2009). Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol, 336(1): 76–83

DOI PMID

72
Mosconi T M, Rice F L, Song M J (1993). Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat. J Comp Neurol, 328(2): 232–251

DOI PMID

73
Mountcastle V B (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol, 20(4): 408–434

PMID

74
Munger B L, Ide C (1988). The structure and function of cutaneous sensory receptors. Arch Histol Cytol, 51(1): 1–34

DOI PMID

75
Nakamura S, Senzaki K, Yoshikawa M, Nishimura M, Inoue K, Ito Y, Ozaki S, Shiga T (2008). Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development, 135(9): 1703–1711

DOI PMID

76
Ogawa H (1996). The Merkel cell as a possible mechanoreceptor cell. Prog Neurobiol, 49(4): 317–334

PMID

77
Palmer C I, Gardner E P (1990). Simulation of motion on the skin. IV. Responses of Pacinian corpuscle afferents innervating the primate hand to stripe patterns on the OPTACON. J Neurophysiol, 64(1): 236–247

PMID

78
Paré M, Behets C, Cornu O (2003). Paucity of presumptive ruffini corpuscles in the index finger pad of humans. J Comp Neurol, 456(3): 260–266

DOI PMID

79
Paré M, Elde R, Mazurkiewicz J E, Smith A M, Rice F L (2001). The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J Neurosci, 21(18): 7236–7246

PMID

80
Paré M, Smith A M, Rice F L (2002). Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J Comp Neurol, 445(4): 347–359

DOI PMID

81
Pease D C, Pallie W (1959). Electron microscopy of digital tactile corpuscles and small cutaneous nerves. J Ultrastruct Res, 2(3): 352–365

DOI PMID

82
Pease D C, Quilliam T A (1957). Electron microscopy of the pacinian corpuscle. J Biophys Biochem Cytol, 3(3): 331–342

DOI PMID

83
Perez-Pinera P, García-Suarez O, Germanà A, Díaz-Esnal B, de Carlos F, Silos-Santiago I, del Valle M E, Cobo J, Vega J A (2008). Characterization of sensory deficits in TrkB knockout mice. Neurosci Lett, 433(1): 43–47

DOI PMID

84
Peters E M, Botchkarev V A, Müller-Röver S, Moll I, Rice F L, Paus R (2002). Developmental timing of hair follicle and dorsal skin innervation in mice. J Comp Neurol, 448(1): 28–52

DOI PMID

85
Quilliam T A, Sato M (1955). The distribution of myelin on nerve fibres from Pacinian corpuscles. J Physiol, 129(1): 167–176

PMID

86
Rasmusson D D, Turnbull B G (1986). Sensory innervation of the raccoon forepaw: 2. Response properties and classification of slowly adapting fibers. Somatosens Res, 4(1): 63–75

DOI PMID

87
Rice F L, Rasmusson D D (2000). Innervation of the digit on the forepaw of the raccoon. J Comp Neurol, 417(4): 467–490

DOI PMID

88
Sato M (1961). Response of Pacinian corpuscles to sinusoidal vibration. J Physiol, 159: 391–409

PMID

89
Saxod R (1996). Ontogeny of the cutaneous sensory organs. Microsc Res Tech, 34(4): 313–333

DOI PMID

90
Scheibel M E, Scheibel A B (1968). Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res, 9(1): 32–58

DOI PMID

91
Scheibert J, Leurent S, Prevost A, Debrégeas G (2009). The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science, 323(5920): 1503–1506

DOI PMID

92
Scott A, Hasegawa H, Sakural K, Yaron A, Cobb J, Wang F (2011). Transcription factor short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-expressing mechanosensory neurons. J Neurosci, 31(18): 6741–6749

93
Sedý J, Tseng S, Walro J M, Grim M, Kucera J (2006). ETS transcription factor ER81 is required for the Pacinian corpuscle development. Dev Dyn, 235(4): 1081–1089

DOI PMID

94
Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Egger M D (1984). Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord. Brain Res, 302(1): 135–150

DOI PMID

95
Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Yang G, Egger M D (1985). An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. J Comp Neurol, 232(2): 229–240

DOI PMID

96
Senok S S, Baumann K I (1997). Functional evidence for calcium-induced calcium release in isolated rat vibrissal Merkel cell mechanoreceptors. J Physiol, 500(Pt 1): 29–37

PMID

97
Senok S S, Baumann K I, Halata Z (1996). Selective phototoxic destruction of quinacrine-loaded Merkel cells is neither selective nor complete. Exp Brain Res, 110(3): 325–334

DOI PMID

98
Senzaki K, Ozaki S, Yoshikawa M, Ito Y, Shiga T (2010). Runx3 is required for the specification of TrkC-expressing mechanoreceptive trigeminal ganglion neurons. Mol Cell Neurosci, 43(3): 296–307

DOI PMID

99
Shortland P, Woolf C J (1993). Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol, 329(4): 491–511

DOI PMID

100
Skaper S D (2012). The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol, 846: 1–12

DOI PMID

101
Suzuki M, Ebara S, Koike T, Tonomura S, Kumamoto K (2012). How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse. Proc Jpn Acad, Ser B, Phys Biol Sci, 88(10): 583–595

DOI PMID

102
Szeder V, Grim M, Halata Z, Sieber-Blum M (2003). Neural crest origin of mammalian Merkel cells. Dev Biol, 253(2): 258–263

DOI PMID

103
Tachibana T, Nawa T (2002). Recent progress in studies on Merkel cell biology. Anat Sci Int, 77(1): 26–33

DOI PMID

104
Takahashi-Iwanaga H (2000). Three-dimensional microanatomy of longitudinal lanceolate endings in rat vibrissae. J Comp Neurol, 426(2): 259–269

DOI PMID

105
Talbot W H, Darian-Smith I, Kornhuber H H, Mountcastle V B (1968). The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol, 31(2): 301–334

PMID

106
Tapper D N (1965). Stimulus-response relationships in the cutaneous slowly-adapting mechanoreceptor in hairy skin of the cat. Exp Neurol, 13(4): 364–385

DOI PMID

107
Wellnitz S A, Lesniak D R, Gerling G J, Lumpkin E A (2010). The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin. J Neurophysiol, 103(6): 3378–3388

DOI PMID

108
Wende H, Lechner S G, Cheret C, Bourane S, Kolanczyk M E, Pattyn A, Reuter K, Munier F L, Carroll P, Lewin G R, Birchmeier C (2012). The transcription factor c-Maf controls touch receptor development and function. Science, 335(6074): 1373–1376

DOI PMID

109
Willis W D, Coggeshall R E (2004). Sensory Mechanisms of the Spinal Cord. New York, Kluwer Academic/Plenum Publishers

110
Winkelmann R K, Breathnach A S (1973). The Merkel cell. J Invest Dermatol, 60(1): 2–15

DOI PMID

111
Woo S H, Baba Y, Franco A M, Lumpkin E A, Owens D M (2012). Excitatory glutamate is essential for development and maintenance of the piloneural mechanoreceptor. Development, 139(4): 740–748

DOI PMID

112
Woodbury C J, Ritter A M, Koerber H R (2001). Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the “hairy” skin of newborn mice: early maturation of hair follicle afferents. J Comp Neurol, 436(3): 304–323

DOI PMID

113
Yamashita Y, Akaike N, Wakamori M, Ikeda I, Ogawa H (1992). Voltage-dependent currents in isolated single Merkel cells of rats. J Physiol, 450: 143–162

PMID

114
Yoshikawa M, Murakami Y, Senzaki K, Masuda T, Ozaki S, Ito Y, Shiga T (2013). Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev Neurobiol, 73(6): 469–479

DOI PMID

115
Zelená J (1978). The development of Pacinian corpuscles. J Neurocytol, 7(1): 71–91

DOI PMID

116
Zelena J (1994). Nerves and Mechanoreceptors. London, Chapman & Hall

117
Zelená J, Halata Z, Szeder V, Grim M (1997). Crural Herbst corpuscles in chicken and quail: numbers and structure. Anat Embryol (Berl), 196(4): 323–333

DOI PMID

118
Zelená J, Jirmanová I, Nitatori T, Ide C (1990). Effacement and regeneration of tactile lamellar corpuscles of rat after postnatal nerve crush. Neuroscience, 39(2): 513–522

DOI PMID

Outlines

/