REVIEW

The perinucleolar compartment associates with malignancy

  • Yiping WEN 1,2 ,
  • Chen WANG 1 ,
  • Sui HUANG , 1
Expand
  • 1. Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, IL 60611, USA
  • 2. College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China

Received date: 27 Mar 2013

Accepted date: 15 Apr 2013

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The perinucleolar compartment (PNC) is a unique nuclear substructure, forming predominantly in cancer cells both in vitro and in vivo. PNC prevalence (percentage of cells containing at least one PNC) has been found to positively correlate with disease progression in several cancers (breast, ovarian, and colon). While there is a clear association between PNCs and cancer, the molecular function of the PNC remains unclear. Here we summarize the current understanding of the association of PNCs with cancer and its possible functions in cancer cells.

Cite this article

Yiping WEN , Chen WANG , Sui HUANG . The perinucleolar compartment associates with malignancy[J]. Frontiers in Biology, 2013 , 8(4) : 369 -376 . DOI: 10.1007/s11515-013-1265-z

Acknowledgements

We thank the support from NIH grant (2R01GM078555-05) and from the Robert H. Lurie Comprehensive Cancer Center.
Compliance with ethics guidelines
1
Altman S (1990). Ribonuclease P. Postscript. J Biol Chem, 265(33): 20053-20056

2
Anderson J T, Wilson S M, (1993). NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol, 13(5): 2730-2741

3
Apponi L H, Corbett A H, Pavlath G K (2011). RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol Sci, 32(11): 652-658

DOI

4
Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637-644

DOI

5
Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A, Proudfoot N (2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol, 24(10): 4174-4183

DOI

6
Charlet B N, Savkur R S, Singh G, Philips A V, Grice E A, Cooper T A (2002). Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell, 10(1): 45-53

DOI

7
Chen M, Zhang J, Manley J L (2010). Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res, 70(22): 8977-8980

DOI

8
Clayton D A (1994). A nuclear function for RNase MRP. Proc Natl Acad Sci USA, 91(11): 4615-4617

DOI

9
Esakova O, Krasilnikov A S (2010). Of proteins and RNA: the RNase P/MRP family. RNA, 16(9): 1725-1747

DOI

10
Esakova O, Perederina A, Quan C, Berezin I, Krasilnikov A S (2011). Substrate recognition by ribonucleoprotein ribonuclease MRP. RNA, 17(2): 356-364

DOI

11
Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol, 2(7): a000687

DOI

12
Frank R, Hargreaves R (2003). Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov, 2(7): 566-580

DOI

13
Ghetti A, Pinol-Roma S, Michael W M, Morandi C, Dreyfuss G (1992). hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res, 20(14): 3671-3678

DOI

14
Gromak N, Rideau A, Southby J, Scadden A D J, Gooding C, Hüttelmaier S, Singer R H, Smith C W J (2003). The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J, 22(23): 6356-6364

DOI

15
Hall M P, Huang S, (2004). Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell, 15(2): 774-786

DOI

16
Hellen C U, Pestova T V, (1994). The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. J Virol, 68(2): 941-950

17
Ho T H, Bundman D, Armstrong, D L, Cooper, T A (2005). Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet, 14(11): 1539-1547

DOI

18
Huang S, Deerinck T J, Ellisman M H, Spector D L (1997). The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol, 137(5): 965-974

DOI

19
Huang S, Deerinck T J, Ellisman M H, Spector D L (1998). The perinucleolar compartment and transcription. J Cell Biol, 143(1): 35-47

DOI

20
Huttelmaier S, Illenberger S, Grosheva I, Rudiger M, Singer R H, and Jockusch B M (2001). Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J Cell Biol, 155(5): 775-786

DOI

21
Jackson D A, Hassan A B, Errington P R (1993). Visualization of focal sites of transcription within human nuclei. EMBO J, 12: 1059-1065

22
Jacobson M R, Cao L G, Wang Y L, Pederson T (1995). Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol, 131(6 Pt 2): 1649-1658

DOI

23
Jarrous N (2002). Human ribonuclease P: subunits, function, and intranuclear localization. RNA, 8(1): 1-7

DOI

24
Jones K, Timchenko L, Timchenko N A (2012). The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev, 11(4): 442-449

DOI

25
Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C, Cherny D, Joshi A, Kotik-Kogan O, Curry S, Eperon I C, Jackson R J, Smith C W J (2012). Defining the roles and interactions of PTB. Biochem Soc Trans, 40(4): 815-820

DOI

26
Kamath R V, Leary D J, Huang S (2001). Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell, 12(12): 3808-3820

27
Kamath R V, Thor A D, Wang C, Edgerton SM, Slusarczyk A, Leary D J, Wang J, Wiley E L, Jovanovic B, Wu Q, Nayar R, Kovarik P, Shi F, Huang S (2005). Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res, 65(1): 246-253

28
Kaminski A, Hunt S L, Patton J G, Jackson- Rna R J (1995). Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA, 1(9): 924-938

29
Lee B, Matera A G, Ward D C, Craft J (1996). Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA, 93(21): 11471-11476

DOI

30
Liu Y, Norton J T, Witschi M A, Xu Q, Lou G, Wang C, H Appella D, Chen Z, Huang S (2011). Methoxyethylamino-numonafide is an efficacious and minimally toxic amonafide derivative in murine models of human cancer. Neoplasia, 13(5): 453-460

31
Lou H, Gagel R F, Berget S M (1996). An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev, 10(2): 208-219

DOI

32
Lou H, Helfman D M, Gagel R F, Berget S M (1999). Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol Cell Biol, 19(1): 78-85

33
Mahadevan M S (2012). Myotonic dystrophy: is a narrow focus obscuring the rest of the field? Curr Opin Neurol, 25(5): 609-613

DOI

34
Matera A G, Frey M R, Margelot K, Wolin S L (1995). A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol, 129(5): 1181-1193

DOI

35
Norton J T, Pollock C B, Wang C, Schink J C, Kim J J, Huang S (2008). Perinucleolar compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer, 113(4): 861-869

DOI

36
Norton J T, Titus S A, Dexter D, Austin C P, Zheng W, Huang S (2009). Automated high-content screening for compounds that disassemble the perinucleolar compartment. J Biomol Screen, 14(9): 1045-1053

DOI

37
Norton J T, Wang C, Gjidoda A, Henry R W, Huang S (2009). The perinucleolar compartment is directly associated with DNA. J Biol Chem, 284(7): 4090-4101

DOI

38
Norton J T, Witschi M A, Luong L, Kawamura A, Ghosh S, Sharon Stack M, Sim E, Avram M J, Appella D H, Huang S (2008). Synthesis and anticancer activities of 6-amino amonafide derivatives. Anticancer Drugs, 19(1): 23-36

DOI

39
O'Keefe R T, Mayeda A, Sadowski C L, Krainer A R, and Spec-tor D L (1994). Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J Cell Biol, 124(3): 249-260

DOI

40
Paillard L, Legagneux V, Osborne H B (2003). A functional deadenylation assay identifies human CUG-BP as a deadenylation factor. Biol Cell, 95(2): 107-113

DOI

41
Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov A S (2010). Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J, 29(4): 761-769

DOI

42
Perez I, Lin C H, Mcafee J, Patton J (1997). Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA, 3(7): 764-778

43
Pettaway C A, Pathak S, Greene G, Ramirez E, Wilson M R, Killion J J, Fidler I J (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res, 2(9): 1627-1636

44
Pianese G (1896). Beitrag zur histologie und aetiologie der carcinoma. Histologische und experimentelle untersuchungen. Beitr Pathol Anat Allgem Pathol, 142(1): 193

45
Pickering B M, Mitchell S A, Evans J R, Willis A E (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res, 31(2): 639-646

DOI

46
Pollock C, Daily K, Nguyen V T, Wang C, Lewandowska M A, Bensaude O, Huang S (2011). Characterization of MRP RNA-protein interactions within the perinucleolar compartment. Mol Biol Cell, 22(6): 858-866

DOI

47
Savkur R S, Philips A V, Cooper T A (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet, 29(1): 40-47

DOI

48
Sawicka K, Bushell M, Spriggs K A, Willis A E (2008). Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans, 36(Pt 4): 641-647

DOI

49
Schneider R, Agol V I, Andino R, Bayard F, Cavener D R, Chappell S A, Chen J J, Darlix J L, Dasgupta A, Donze O (2001). New ways of initiating translation in eukaryotes. Mol Cell Biol, 21(23): 8238-8246

DOI

50
Slusarczyk A, Kamath R, Wang C, Anchel D, Pollock C, Lewandowska M A, Fitzpatrick T, Bazett-Jones D P, Huang S (2010). Structure and function of the perinucleolar compartment in cancer cells. Cold Spring Harb Symp Quant Biol, 75(0): 599-605

DOI

51
Steinberg T H, Burgess R R (1992). Tagetitoxin inhibition of RNA polymerase III transcription results from enhanced pausing at discrete sites and is template-dependent. J Biol Chem, 267(28): 20204-20211

52
Steinberg T H, Mathews D E, Durbin R D, Burgess R R (1990). Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem, 265(1): 499-505

53
Timchenko L T, Miller J W, Timchenko N A, DeVore D R, Datar K V, Lin L, Roberts R, Caskey C T, Swanson M S (1996). Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res, 24(22): 4407-4414

DOI

54
Valcarcel J, Gebauer F (1997). Post-transcriptional regulation: the dawn of PTB. Curr Biol, 7(11): R705-R708

DOI

55
Van Eenennaam H, Vogelzangs J H, Lugtenberg D, Van Den Hoogen F H J, Van Venrooij W J, Pruijn G J M (2002). Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum, 46(12): 3266-3272

DOI

56
Wagner E J, Carstens R P, Garcia-Blanco M A (1999). A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis, 20(4-5): 1082-1086

DOI

57
Wagner E J, Garcia-Blanco M A (2002). RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell, 10(4): 943-949

DOI

58
Wang C, Politz J C, Pederson T, Huang S (2003). RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell, 14(6): 2425-2435

DOI

59
Wansink D G, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993). Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol, 122(2): 283-293

DOI

60
Witherell G W, Schultz-Witherell C S, Wimmer E C K A R D (1995). Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology, 214(2): 660-663

DOI

61
Xiao S, Scott F, Fierke C A, Engelke D R (2002). EUKARYOTIC RIBONUCLEASE P: A Plurality of Ribonucleoprotein Enzymes. Annu Rev Biochem, 71(1): 165-189

DOI

62
Xie J, Lee J A, Kress T L, Mowry K L, Black D L (2003). Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci USA, 100(15): 8776-8781

DOI

63
Zhang W, Liu H, Han K, Grabowski P J (2002). Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA, 8(5): 671-685

DOI

64
Zwerger M, Ho C Y, Lammerding J (2011). Nuclear mechanics in disease. Annu Rev Biomed Eng, 13(1): 397-428

DOI

Outlines

/