Current technologies to identify protein kinase substrates in high throughput
Received date: 27 Dec 2012
Accepted date: 22 Jan 2013
Published date: 01 Apr 2013
Copyright
Since the discovery of protein phosphorylation as an important modulator of many cellular processes, the involvement of protein kinases in diseases, such as cancer, diabetes, cardiovascular diseases, and central nervous system pathologies, has been extensively documented. Our understanding of many disease pathologies at the molecular level, therefore, requires the comprehensive identification of substrates targeted by protein kinases. In this review, we focus on recent techniques for kinase substrate identification in high throughput, in particular on genetic and proteomic approaches. Each method with its inherent advantages and limitations is discussed.
Liang XUE , W. Andy TAO . Current technologies to identify protein kinase substrates in high throughput[J]. Frontiers in Biology, 2013 , 8(2) : 216 -227 . DOI: 10.1007/s11515-013-1257-z
1 |
Amanchy R, Zhong J, Molina H, Chaerkady R, Iwahori A, Kalume D E, Grønborg M, Joore J, Cope L, Pandey A (2008). Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays. J Proteome Res, 7(9): 3900–3910
|
2 |
Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K (2010). A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS ONE, 5(1): e8704
|
3 |
Belozerov V E, Lin Z Y, Gingras A C, McDermott J C, Michael Siu K W (2012). High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol, 32(18): 3695–3706
|
4 |
Blethrow J, Zhang C, Shokat K M, Weiss E L (2004). Design and use of analog-sensitive protein kinases. Curr Protoc Mol Biol, Chapter 18, Unit 18 11.
|
5 |
Blume-Jensen P, Hunter T (2001). Oncogenic kinase signalling. Nature, 411(6835): 355–365
|
6 |
Breitkreutz A, Choi H, Sharom J R, Boucher L, Neduva V, Larsen B, Lin Z Y, Breitkreutz B J, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin Z S, Pawson T, Gingras A C, Nesvizhskii A I, Tyers M (2010). A global protein kinase and phosphatase interaction network in yeast. Science, 328(5981): 1043–1046
|
7 |
Buss H, Dörrie A, Schmitz M L, Frank R, Livingstone M, Resch K, Kracht M (2004). Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-κB activity. J Biol Chem, 279(48): 49571–49574
|
8 |
Cañas B, López-Ferrer D, Ramos-Fernández A, Camafeita E, Calvo E (2006). Mass spectrometry technologies for proteomics. Brief Funct Genomics Proteomics, 4(4): 295–320
|
9 |
Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, Yoo S J, Hay B A, Guo M (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097): 1162–1166
|
10 |
Coba M P, Pocklington A J, Collins M O, Kopanitsa M V, Uren R T, Swamy S, Croning M D, Choudhary J S, Grant S G (2009). Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal, 2(68): ra19
|
11 |
Cohen P (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem, 268(19): 5001–5010
|
12 |
Cohen P (2002). Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov, 1(4): 309–315
|
13 |
Cohen P, Knebel A (2006). KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochem J, 393(Pt 1): 1–6
|
14 |
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear E D, Sevier C S, Ding H, Koh J L, Toufighi K, Mostafavi S, Prinz J, St Onge R P, VanderSluis B, Makhnevych T, Vizeacoumar F J, Alizadeh S, Bahr S, Brost R L, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z Y, Liang W, Marback M, Paw J, San Luis B J, Shuteriqi E, Tong A H, van Dyk N, Wallace I M, Whitney J A, Weirauch M T, Zhong G, Zhu H, Houry W A, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth F P, Giaever G, Nislow C, Troyanskaya O G, Bussey H, Bader G D, Gingras A C, Morris Q D, Kim P M, Kaiser C A, Myers C L, Andrews B J, Boone C (2010). The genetic landscape of a cell. Science, 327(5964): 425–431
|
15 |
Daub H, Olsen J V, Bairlein M, Gnad F, Oppermann F S, Körner R, Greff Z, Kéri G, Stemmann O, Mann M (2008). Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell, 31(3): 438–448
|
16 |
Delom F, Chevet E (2006). Phosphoprotein analysis: from proteins to proteomes. Proteome Sci, 4(1): 15
|
17 |
Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci P G, Cesareni G (1997). Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol, 269(5): 694–703
|
18 |
Dephoure N, Howson R W, Blethrow J D, Shokat K M, O’Shea E K (2005). Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci USA, 102(50): 17940–17945
|
19 |
Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva A C, Shales M, Collins S R, van Wageningen S, Kemmeren P, Holstege F C, Weissman J S, Keogh M C, Koller D, Shokat K M, Krogan N J (2009). Functional organization of the S. cerevisiae phosphorylation network. Cell, 136(5): 952–963
|
20 |
Fujii K, Zhu G, Liu Y, Hallam J, Chen L, Herrero J, Shaw S (2004). Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc Natl Acad Sci USA, 101(38): 13744–13749
|
21 |
Fukunaga R, Hunter T (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J, 16(8): 1921–1933
|
22 |
Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084): 631–636
|
23 |
Gavin A C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868): 141–147
|
24 |
Habelhah H, Shah K, Huang L, Burlingame A L, Shokat K M, Ronai Z (2001). Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J Biol Chem, 276(21): 18090–18095
|
25 |
Huang S Y, Tsai M L, Chen G Y, Wu C J, Chen S H (2007). A systematic MS-based approach for identifying invitro substrates of PKA and PKG in rat uteri. J Proteome Res, 6(7): 2674–2684
|
26 |
Huang Y, Houston N L, Tovar-Mendez A, Stevenson S E, Miernyk J A, Randall D D, Thelen J J (2010). A quantitative mass spectrometry-based approach for identifying protein kinase clients and quantifying kinase activity. Anal Biochem, 402(1): 69–76
|
27 |
Hunter T (2000). Signaling—2000 and beyond. Cell, 100(1): 113–127
|
28 |
Iliuk A B, Martin V A, Alicie B M, Geahlen R L, Tao W A (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics, 9(10): 2162–2172
|
29 |
Jeong J S, Jiang L Z, Albino E, Marrero J, Rho H S, Hu J F, Hu S H, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A, Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, 11(6): 016253
|
30 |
Jiang W, Jimenez G, Wells N J, Hope T J, Wahl G M, Hunter T, Fukunaga R (1998). PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell, 2(6): 877–885
|
31 |
Jin L L, Tong J F, Prakash A, Peterman S M, St-Germain J R, Taylor P, Trudel S, Moran M F (2010). Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res, 9(5): 2752–2761
|
32 |
Johnson S A, Hunter T (2005). Kinomics: methods for deciphering the kinome. Nat Methods, 2(1): 17–25
|
33 |
Kettenbach A N, Schweppe D K, Faherty B K, Pechenick D, Pletnev A A, Gerber S A (2011). Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal, 4(179): rs5
|
34 |
Khati M, Pillay T S (2004). Phosphotyrosine phosphoepitopes can be rapidly analyzed by coexpression of a tyrosine kinase in bacteria with a T7 bacteriophage display library. Anal Biochem, 325(1): 164–167
|
35 |
Kim M, Shin D S, Kim J, Lee Y S (2010). Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers, 94(6): 753–762
|
36 |
Kim Y G, Shin D S, Kim E M, Park H Y, Lee C S, Kim J H, Lee B S, Lee Y S, Kim B G (2007). High-throughput identification of substrate specificity for protein kinase by using an improved one-bead-one-compound library approach. Angew Chem Int Ed Engl, 46(28): 5408–5411
|
37 |
Knebel A, Morrice N, Cohen P (2001). A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J, 20(16): 4360–4369
|
38 |
Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics, 8(1): 81–94
|
39 |
Kreegipuu A, Blom N, Brunak S, Järv J (1998). Statistical analysis of protein kinase specificity determinants. FEBS Lett, 430(1-2): 45–50
|
40 |
Krogan N J, Cagney G, Yu H Y, Zhong G Q, Guo X H, Ignatchenko A, Li J, Pu S Y, Datta N, Tikuisis A P, Punna T, Peregrín-Alvarez J M, Shales M, Zhang X, Davey M, Robinson M D, Paccanaro A, Bray J E, Sheung A, Beattie B, Richards D P, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete M M, Vlasblom J, Wu S, Orsi C, Collins S R, Chandran S, Haw R, Rilstone J J, Gandi K, Thompson N J, Musso G, St Onge P, Ghanny S, Lam M H, Butland G, Altaf-Ul A M, Kanaya S, Shilatifard A, O’Shea E, Weissman J S, Ingles C J, Hughes T R, Parkinson J, Gerstein M, Wodak S J, Emili A, Greenblatt J F (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084): 637–643
|
41 |
Lam K S, Wu J Z, Lou Q (1995). Identification and characterization of a novel synthetic peptide substrate specific for Src-family protein tyrosine kinases. Int J Pept Protein Res, 45(6): 587–592
|
42 |
Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921
|
43 |
Leberer E, Thomas D Y, Whiteway M (1997). Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev, 7(1): 59–66
|
44 |
Lesaicherre M L, Uttamchandani M, Chen G Y J, Yao S Q (2002). Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett, 12(16): 2085–2088
|
45 |
Linding R, Jensen L J, Ostheimer G J, van Vugt M A, Jørgensen C, Miron I M, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park J G, Samson L D, Woodgett J R, Russell R B, Bork P, Yaffe M B, Pawson T (2007). Systematic discovery of in vivo phosphorylation networks. Cell, 129(7): 1415–1426
|
46 |
Lou Q, Leftwich M E, Lam K S (1996). Identification of GIYWHHY as a novel peptide substrate for human p60c-src protein tyrosine kinase. Bioorg Med Chem, 4(5): 677–682
|
47 |
Mah A S, Elia A E, Devgan G, Ptacek J, Schutkowski M, Snyder M, Yaffe M B, Deshaies R J (2005). Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem, 6(1): 22
|
48 |
Manning B D, Cantley L C (2002). Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE, 2002(162): pe49
|
49 |
Manning B D, Tee A R, Logsdon M N, Blenis J, Cantley L C (2002a). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell, 10(1): 151–162
|
50 |
Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002b). The protein kinase complement of the human genome. Science, 298(5600): 1912–1934
|
51 |
Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich O A, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber L A (2010). QIKS—Quantitative identification of kinase substrates. Proteomics, 10(10): 2015–2025
|
52 |
Neville D C, Rozanas C R, Price E M, Gruis D B, Verkman A S, Townsend R R (1997). Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci, 6(11): 2436–2445
|
53 |
Obenauer J C, Cantley L C, Yaffe M B (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 31(13): 3635–3641
|
54 |
Paradis S, Ruvkun G (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev, 12(16): 2488–2498
|
55 |
Pawson T (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 116(2): 191–203
|
56 |
Pillay T S (2004). A fisherman’s tale: Phage display as a discovery tool. Discov Med, 4(23): 315–318
|
57 |
Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 76(14): 3935–3943
|
58 |
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684
|
59 |
Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science, 287(5461): 2204–2215
|
60 |
Schmitz R, Baumann G, Gram H (1996). Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J Mol Biol, 260(5): 664–677
|
61 |
Sha D, Chin L S, Li L (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet, 19(2): 352–363
|
62 |
Shah K, Liu Y, Deirmengian C, Shokat K M (1997). Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci USA, 94(8): 3565–3570
|
63 |
Shin D S, Kim Y G, Kim E M, Kim M, Park H Y, Kim J H, Lee B S, Kim B G, Lee Y S (2008). Solid-phase peptide library synthesis on HiCore resin for screening substrate specificity of Brk protein tyrosine kinase. J Comb Chem, 10(1): 20–23
|
64 |
Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012). Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics, 11(10): 1070–1083
|
65 |
Songyang Z, Carraway K L 3rd, Eck M J, Harrison S C, Feldman R A, Mohammadi M, Schlessinger J, Hubbard S R, Smith D P, Eng C, Lorenzo M J, Ponder B A J, Mayer B J, Cantley L C (1995). Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature, 373(6514): 536–539
|
66 |
Songyang Z, Lu K P, Kwon Y T, Tsai L H, Filhol O, Cochet C, Brickey D A, Soderling T R, Bartleson C, Graves D J, DeMaggio A J, Hoekstra M F, Blenis J, Hunter T, Cantley L C (1996). A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol, 16(11): 6486–6493
|
67 |
Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver S G, Cyert M, Hughes T R, Boone C, Andrews B (2006). Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell, 21(3): 319–330
|
68 |
Staudinger J, Zhou J, Burgess R, Elledge S J, Olson E N (1995). PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol, 128(3): 263–271
|
69 |
Tien A C, Lin M H, Su L J, Hong Y R, Cheng T S, Lee Y C, Lin W J, Still I H, Huang C Y (2004). Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol Cell Proteomics, 3(1): 93–104
|
70 |
Troiani S, Uggeri M, Moll J, Isacchi A, Kalisz H M, Rusconi L, Valsasina B (2005). Searching for biomarkers of Aurora-A kinase activity: identification of in vitro substrates through a modified KESTREL approach. J Proteome Res, 4(4): 1296–1303
|
71 |
Vadlamudi R K, Li F, Adam L, Nguyen D, Ohta Y, Stossel T P, Kumar R (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol, 4(9): 681–690
|
72 |
Witze E S, Old W M, Resing K A, Ahn N G (2007). Mapping protein post-translational modifications with mass spectrometry. Nat Methods, 4(10): 798–806
|
73 |
Wu R H, Haas W, Dephoure N, Huttlin E L, Zhai B, Sowa M E, Gygi S P (2011). A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods, 8(8): 677–683
|
74 |
Xue L, Wang W H, Iliuk A, Hu L, Galan J A, Yu S, Hans M, Geahlen R L, Tao W A (2012). Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci USA, 109(15): 5615–5620
|
75 |
Yaffe M B, Leparc G G, Lai J, Obata T, Volinia S, Cantley L C (2001). A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol, 19(4): 348–353
|
76 |
Yang X, Hubbard E J, Carlson M (1992). A protein kinase substrate identified by the two-hybrid system. Science, 257(5070): 680–682
|
77 |
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105
|
/
〈 | 〉 |