REVIEW

Current technologies to identify protein kinase substrates in high throughput

  • Liang XUE 1 ,
  • W. Andy TAO , 1,2,3,4
Expand
  • 1. Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
  • 2. Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
  • 3. Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
  • 4. Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA

Received date: 27 Dec 2012

Accepted date: 22 Jan 2013

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Since the discovery of protein phosphorylation as an important modulator of many cellular processes, the involvement of protein kinases in diseases, such as cancer, diabetes, cardiovascular diseases, and central nervous system pathologies, has been extensively documented. Our understanding of many disease pathologies at the molecular level, therefore, requires the comprehensive identification of substrates targeted by protein kinases. In this review, we focus on recent techniques for kinase substrate identification in high throughput, in particular on genetic and proteomic approaches. Each method with its inherent advantages and limitations is discussed.

Cite this article

Liang XUE , W. Andy TAO . Current technologies to identify protein kinase substrates in high throughput[J]. Frontiers in Biology, 2013 , 8(2) : 216 -227 . DOI: 10.1007/s11515-013-1257-z

Acknowledgment

This project has been funded in part by National Institutes of Health grant R01GM088317 and by National Institute of Food and Agriculture (NIFA).
1
Amanchy R, Zhong J, Molina H, Chaerkady R, Iwahori A, Kalume D E, Grønborg M, Joore J, Cope L, Pandey A (2008). Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays. J Proteome Res, 7(9): 3900–3910

DOI PMID

2
Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K (2010). A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS ONE, 5(1): e8704

DOI PMID

3
Belozerov V E, Lin Z Y, Gingras A C, McDermott J C, Michael Siu K W (2012). High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol, 32(18): 3695–3706

DOI PMID

4
Blethrow J, Zhang C, Shokat K M, Weiss E L (2004). Design and use of analog-sensitive protein kinases. Curr Protoc Mol Biol, Chapter 18, Unit 18 11.

5
Blume-Jensen P, Hunter T (2001). Oncogenic kinase signalling. Nature, 411(6835): 355–365

DOI PMID

6
Breitkreutz A, Choi H, Sharom J R, Boucher L, Neduva V, Larsen B, Lin Z Y, Breitkreutz B J, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin Z S, Pawson T, Gingras A C, Nesvizhskii A I, Tyers M (2010). A global protein kinase and phosphatase interaction network in yeast. Science, 328(5981): 1043–1046

DOI PMID

7
Buss H, Dörrie A, Schmitz M L, Frank R, Livingstone M, Resch K, Kracht M (2004). Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-κB activity. J Biol Chem, 279(48): 49571–49574

DOI PMID

8
Cañas B, López-Ferrer D, Ramos-Fernández A, Camafeita E, Calvo E (2006). Mass spectrometry technologies for proteomics. Brief Funct Genomics Proteomics, 4(4): 295–320

DOI PMID

9
Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, Yoo S J, Hay B A, Guo M (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097): 1162–1166

DOI PMID

10
Coba M P, Pocklington A J, Collins M O, Kopanitsa M V, Uren R T, Swamy S, Croning M D, Choudhary J S, Grant S G (2009). Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal, 2(68): ra19

DOI PMID

11
Cohen P (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem, 268(19): 5001–5010

DOI PMID

12
Cohen P (2002). Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov, 1(4): 309–315

DOI PMID

13
Cohen P, Knebel A (2006). KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochem J, 393(Pt 1): 1–6

DOI PMID

14
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear E D, Sevier C S, Ding H, Koh J L, Toufighi K, Mostafavi S, Prinz J, St Onge R P, VanderSluis B, Makhnevych T, Vizeacoumar F J, Alizadeh S, Bahr S, Brost R L, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z Y, Liang W, Marback M, Paw J, San Luis B J, Shuteriqi E, Tong A H, van Dyk N, Wallace I M, Whitney J A, Weirauch M T, Zhong G, Zhu H, Houry W A, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth F P, Giaever G, Nislow C, Troyanskaya O G, Bussey H, Bader G D, Gingras A C, Morris Q D, Kim P M, Kaiser C A, Myers C L, Andrews B J, Boone C (2010). The genetic landscape of a cell. Science, 327(5964): 425–431

DOI PMID

15
Daub H, Olsen J V, Bairlein M, Gnad F, Oppermann F S, Körner R, Greff Z, Kéri G, Stemmann O, Mann M (2008). Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell, 31(3): 438–448

DOI PMID

16
Delom F, Chevet E (2006). Phosphoprotein analysis: from proteins to proteomes. Proteome Sci, 4(1): 15

DOI PMID

17
Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci P G, Cesareni G (1997). Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol, 269(5): 694–703

DOI PMID

18
Dephoure N, Howson R W, Blethrow J D, Shokat K M, O’Shea E K (2005). Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci USA, 102(50): 17940–17945

DOI PMID

19
Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva A C, Shales M, Collins S R, van Wageningen S, Kemmeren P, Holstege F C, Weissman J S, Keogh M C, Koller D, Shokat K M, Krogan N J (2009). Functional organization of the S. cerevisiae phosphorylation network. Cell, 136(5): 952–963

DOI PMID

20
Fujii K, Zhu G, Liu Y, Hallam J, Chen L, Herrero J, Shaw S (2004). Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc Natl Acad Sci USA, 101(38): 13744–13749

DOI PMID

21
Fukunaga R, Hunter T (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J, 16(8): 1921–1933

DOI PMID

22
Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084): 631–636

DOI PMID

23
Gavin A C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868): 141–147

DOI PMID

24
Habelhah H, Shah K, Huang L, Burlingame A L, Shokat K M, Ronai Z (2001). Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J Biol Chem, 276(21): 18090–18095

DOI PMID

25
Huang S Y, Tsai M L, Chen G Y, Wu C J, Chen S H (2007). A systematic MS-based approach for identifying invitro substrates of PKA and PKG in rat uteri. J Proteome Res, 6(7): 2674–2684

DOI PMID

26
Huang Y, Houston N L, Tovar-Mendez A, Stevenson S E, Miernyk J A, Randall D D, Thelen J J (2010). A quantitative mass spectrometry-based approach for identifying protein kinase clients and quantifying kinase activity. Anal Biochem, 402(1): 69–76

DOI PMID

27
Hunter T (2000). Signaling—2000 and beyond. Cell, 100(1): 113–127

DOI PMID

28
Iliuk A B, Martin V A, Alicie B M, Geahlen R L, Tao W A (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics, 9(10): 2162–2172

DOI PMID

29
Jeong J S, Jiang L Z, Albino E, Marrero J, Rho H S, Hu J F, Hu S H, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A, Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, 11(6): 016253

DOI PMID

30
Jiang W, Jimenez G, Wells N J, Hope T J, Wahl G M, Hunter T, Fukunaga R (1998). PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell, 2(6): 877–885

DOI PMID

31
Jin L L, Tong J F, Prakash A, Peterman S M, St-Germain J R, Taylor P, Trudel S, Moran M F (2010). Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res, 9(5): 2752–2761

DOI PMID

32
Johnson S A, Hunter T (2005). Kinomics: methods for deciphering the kinome. Nat Methods, 2(1): 17–25

DOI PMID

33
Kettenbach A N, Schweppe D K, Faherty B K, Pechenick D, Pletnev A A, Gerber S A (2011). Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal, 4(179): rs5

DOI PMID

34
Khati M, Pillay T S (2004). Phosphotyrosine phosphoepitopes can be rapidly analyzed by coexpression of a tyrosine kinase in bacteria with a T7 bacteriophage display library. Anal Biochem, 325(1): 164–167

DOI PMID

35
Kim M, Shin D S, Kim J, Lee Y S (2010). Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers, 94(6): 753–762

DOI PMID

36
Kim Y G, Shin D S, Kim E M, Park H Y, Lee C S, Kim J H, Lee B S, Lee Y S, Kim B G (2007). High-throughput identification of substrate specificity for protein kinase by using an improved one-bead-one-compound library approach. Angew Chem Int Ed Engl, 46(28): 5408–5411

DOI PMID

37
Knebel A, Morrice N, Cohen P (2001). A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J, 20(16): 4360–4369

DOI PMID

38
Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics, 8(1): 81–94

DOI PMID

39
Kreegipuu A, Blom N, Brunak S, Järv J (1998). Statistical analysis of protein kinase specificity determinants. FEBS Lett, 430(1-2): 45–50

DOI PMID

40
Krogan N J, Cagney G, Yu H Y, Zhong G Q, Guo X H, Ignatchenko A, Li J, Pu S Y, Datta N, Tikuisis A P, Punna T, Peregrín-Alvarez J M, Shales M, Zhang X, Davey M, Robinson M D, Paccanaro A, Bray J E, Sheung A, Beattie B, Richards D P, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete M M, Vlasblom J, Wu S, Orsi C, Collins S R, Chandran S, Haw R, Rilstone J J, Gandi K, Thompson N J, Musso G, St Onge P, Ghanny S, Lam M H, Butland G, Altaf-Ul A M, Kanaya S, Shilatifard A, O’Shea E, Weissman J S, Ingles C J, Hughes T R, Parkinson J, Gerstein M, Wodak S J, Emili A, Greenblatt J F (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084): 637–643

DOI PMID

41
Lam K S, Wu J Z, Lou Q (1995). Identification and characterization of a novel synthetic peptide substrate specific for Src-family protein tyrosine kinases. Int J Pept Protein Res, 45(6): 587–592

DOI PMID

42
Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921

DOI PMID

43
Leberer E, Thomas D Y, Whiteway M (1997). Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev, 7(1): 59–66

DOI PMID

44
Lesaicherre M L, Uttamchandani M, Chen G Y J, Yao S Q (2002). Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett, 12(16): 2085–2088

DOI PMID

45
Linding R, Jensen L J, Ostheimer G J, van Vugt M A, Jørgensen C, Miron I M, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park J G, Samson L D, Woodgett J R, Russell R B, Bork P, Yaffe M B, Pawson T (2007). Systematic discovery of in vivo phosphorylation networks. Cell, 129(7): 1415–1426

DOI PMID

46
Lou Q, Leftwich M E, Lam K S (1996). Identification of GIYWHHY as a novel peptide substrate for human p60c-src protein tyrosine kinase. Bioorg Med Chem, 4(5): 677–682

DOI PMID

47
Mah A S, Elia A E, Devgan G, Ptacek J, Schutkowski M, Snyder M, Yaffe M B, Deshaies R J (2005). Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem, 6(1): 22

DOI PMID

48
Manning B D, Cantley L C (2002). Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE, 2002(162): pe49

DOI PMID

49
Manning B D, Tee A R, Logsdon M N, Blenis J, Cantley L C (2002a). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell, 10(1): 151–162

DOI PMID

50
Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002b). The protein kinase complement of the human genome. Science, 298(5600): 1912–1934

DOI PMID

51
Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich O A, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber L A (2010). QIKS—Quantitative identification of kinase substrates. Proteomics, 10(10): 2015–2025

DOI PMID

52
Neville D C, Rozanas C R, Price E M, Gruis D B, Verkman A S, Townsend R R (1997). Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci, 6(11): 2436–2445

DOI PMID

53
Obenauer J C, Cantley L C, Yaffe M B (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 31(13): 3635–3641

DOI PMID

54
Paradis S, Ruvkun G (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev, 12(16): 2488–2498

DOI PMID

55
Pawson T (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 116(2): 191–203

DOI PMID

56
Pillay T S (2004). A fisherman’s tale: Phage display as a discovery tool. Discov Med, 4(23): 315–318

PMID

57
Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 76(14): 3935–3943

DOI PMID

58
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684

DOI PMID

59
Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science, 287(5461): 2204–2215

DOI PMID

60
Schmitz R, Baumann G, Gram H (1996). Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J Mol Biol, 260(5): 664–677

DOI PMID

61
Sha D, Chin L S, Li L (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet, 19(2): 352–363

DOI PMID

62
Shah K, Liu Y, Deirmengian C, Shokat K M (1997). Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci USA, 94(8): 3565–3570

DOI PMID

63
Shin D S, Kim Y G, Kim E M, Kim M, Park H Y, Kim J H, Lee B S, Kim B G, Lee Y S (2008). Solid-phase peptide library synthesis on HiCore resin for screening substrate specificity of Brk protein tyrosine kinase. J Comb Chem, 10(1): 20–23

DOI PMID

64
Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012). Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics, 11(10): 1070–1083

DOI PMID

65
Songyang Z, Carraway K L 3rd, Eck M J, Harrison S C, Feldman R A, Mohammadi M, Schlessinger J, Hubbard S R, Smith D P, Eng C, Lorenzo M J, Ponder B A J, Mayer B J, Cantley L C (1995). Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature, 373(6514): 536–539

DOI PMID

66
Songyang Z, Lu K P, Kwon Y T, Tsai L H, Filhol O, Cochet C, Brickey D A, Soderling T R, Bartleson C, Graves D J, DeMaggio A J, Hoekstra M F, Blenis J, Hunter T, Cantley L C (1996). A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol, 16(11): 6486–6493

PMID

67
Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver S G, Cyert M, Hughes T R, Boone C, Andrews B (2006). Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell, 21(3): 319–330

DOI PMID

68
Staudinger J, Zhou J, Burgess R, Elledge S J, Olson E N (1995). PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol, 128(3): 263–271

DOI PMID

69
Tien A C, Lin M H, Su L J, Hong Y R, Cheng T S, Lee Y C, Lin W J, Still I H, Huang C Y (2004). Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol Cell Proteomics, 3(1): 93–104

DOI PMID

70
Troiani S, Uggeri M, Moll J, Isacchi A, Kalisz H M, Rusconi L, Valsasina B (2005). Searching for biomarkers of Aurora-A kinase activity: identification of in vitro substrates through a modified KESTREL approach. J Proteome Res, 4(4): 1296–1303

DOI PMID

71
Vadlamudi R K, Li F, Adam L, Nguyen D, Ohta Y, Stossel T P, Kumar R (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol, 4(9): 681–690

DOI PMID

72
Witze E S, Old W M, Resing K A, Ahn N G (2007). Mapping protein post-translational modifications with mass spectrometry. Nat Methods, 4(10): 798–806

DOI PMID

73
Wu R H, Haas W, Dephoure N, Huttlin E L, Zhai B, Sowa M E, Gygi S P (2011). A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods, 8(8): 677–683

DOI PMID

74
Xue L, Wang W H, Iliuk A, Hu L, Galan J A, Yu S, Hans M, Geahlen R L, Tao W A (2012). Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci USA, 109(15): 5615–5620

DOI PMID

75
Yaffe M B, Leparc G G, Lai J, Obata T, Volinia S, Cantley L C (2001). A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol, 19(4): 348–353

DOI PMID

76
Yang X, Hubbard E J, Carlson M (1992). A protein kinase substrate identified by the two-hybrid system. Science, 257(5070): 680–682

DOI PMID

77
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105

DOI PMID

Outlines

/