Current technologies to identify protein kinase substrates in high throughput

Liang XUE, W. Andy TAO

PDF(562 KB)
PDF(562 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (2) : 216-227. DOI: 10.1007/s11515-013-1257-z
REVIEW
REVIEW

Current technologies to identify protein kinase substrates in high throughput

Author information +
History +

Abstract

Since the discovery of protein phosphorylation as an important modulator of many cellular processes, the involvement of protein kinases in diseases, such as cancer, diabetes, cardiovascular diseases, and central nervous system pathologies, has been extensively documented. Our understanding of many disease pathologies at the molecular level, therefore, requires the comprehensive identification of substrates targeted by protein kinases. In this review, we focus on recent techniques for kinase substrate identification in high throughput, in particular on genetic and proteomic approaches. Each method with its inherent advantages and limitations is discussed.

Keywords

phosphorylation / kinase substrate / in vitro kinase assay / high throughput screening / mass spectrometry / phosphoproteomics

Cite this article

Download citation ▾
Liang XUE, W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput. Front Biol, 2013, 8(2): 216‒227 https://doi.org/10.1007/s11515-013-1257-z

References

[1]
Amanchy R, Zhong J, Molina H, Chaerkady R, Iwahori A, Kalume D E, Grønborg M, Joore J, Cope L, Pandey A (2008). Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays. J Proteome Res, 7(9): 3900–3910
CrossRef Pubmed Google scholar
[2]
Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K (2010). A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS ONE, 5(1): e8704
CrossRef Pubmed Google scholar
[3]
Belozerov V E, Lin Z Y, Gingras A C, McDermott J C, Michael Siu K W (2012). High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol, 32(18): 3695–3706
CrossRef Pubmed Google scholar
[4]
Blethrow J, Zhang C, Shokat K M, Weiss E L (2004). Design and use of analog-sensitive protein kinases. Curr Protoc Mol Biol, Chapter 18, Unit 18 11.
[5]
Blume-Jensen P, Hunter T (2001). Oncogenic kinase signalling. Nature, 411(6835): 355–365
CrossRef Pubmed Google scholar
[6]
Breitkreutz A, Choi H, Sharom J R, Boucher L, Neduva V, Larsen B, Lin Z Y, Breitkreutz B J, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin Z S, Pawson T, Gingras A C, Nesvizhskii A I, Tyers M (2010). A global protein kinase and phosphatase interaction network in yeast. Science, 328(5981): 1043–1046
CrossRef Pubmed Google scholar
[7]
Buss H, Dörrie A, Schmitz M L, Frank R, Livingstone M, Resch K, Kracht M (2004). Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-κB activity. J Biol Chem, 279(48): 49571–49574
CrossRef Pubmed Google scholar
[8]
Cañas B, López-Ferrer D, Ramos-Fernández A, Camafeita E, Calvo E (2006). Mass spectrometry technologies for proteomics. Brief Funct Genomics Proteomics, 4(4): 295–320
CrossRef Pubmed Google scholar
[9]
Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, Yoo S J, Hay B A, Guo M (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097): 1162–1166
CrossRef Pubmed Google scholar
[10]
Coba M P, Pocklington A J, Collins M O, Kopanitsa M V, Uren R T, Swamy S, Croning M D, Choudhary J S, Grant S G (2009). Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal, 2(68): ra19
CrossRef Pubmed Google scholar
[11]
Cohen P (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem, 268(19): 5001–5010
CrossRef Pubmed Google scholar
[12]
Cohen P (2002). Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov, 1(4): 309–315
CrossRef Pubmed Google scholar
[13]
Cohen P, Knebel A (2006). KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochem J, 393(Pt 1): 1–6
CrossRef Pubmed Google scholar
[14]
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear E D, Sevier C S, Ding H, Koh J L, Toufighi K, Mostafavi S, Prinz J, St Onge R P, VanderSluis B, Makhnevych T, Vizeacoumar F J, Alizadeh S, Bahr S, Brost R L, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z Y, Liang W, Marback M, Paw J, San Luis B J, Shuteriqi E, Tong A H, van Dyk N, Wallace I M, Whitney J A, Weirauch M T, Zhong G, Zhu H, Houry W A, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth F P, Giaever G, Nislow C, Troyanskaya O G, Bussey H, Bader G D, Gingras A C, Morris Q D, Kim P M, Kaiser C A, Myers C L, Andrews B J, Boone C (2010). The genetic landscape of a cell. Science, 327(5964): 425–431
CrossRef Pubmed Google scholar
[15]
Daub H, Olsen J V, Bairlein M, Gnad F, Oppermann F S, Körner R, Greff Z, Kéri G, Stemmann O, Mann M (2008). Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell, 31(3): 438–448
CrossRef Pubmed Google scholar
[16]
Delom F, Chevet E (2006). Phosphoprotein analysis: from proteins to proteomes. Proteome Sci, 4(1): 15
CrossRef Pubmed Google scholar
[17]
Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci P G, Cesareni G (1997). Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol, 269(5): 694–703
CrossRef Pubmed Google scholar
[18]
Dephoure N, Howson R W, Blethrow J D, Shokat K M, O’Shea E K (2005). Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci USA, 102(50): 17940–17945
CrossRef Pubmed Google scholar
[19]
Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva A C, Shales M, Collins S R, van Wageningen S, Kemmeren P, Holstege F C, Weissman J S, Keogh M C, Koller D, Shokat K M, Krogan N J (2009). Functional organization of the S. cerevisiae phosphorylation network. Cell, 136(5): 952–963
CrossRef Pubmed Google scholar
[20]
Fujii K, Zhu G, Liu Y, Hallam J, Chen L, Herrero J, Shaw S (2004). Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc Natl Acad Sci USA, 101(38): 13744–13749
CrossRef Pubmed Google scholar
[21]
Fukunaga R, Hunter T (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J, 16(8): 1921–1933
CrossRef Pubmed Google scholar
[22]
Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084): 631–636
CrossRef Pubmed Google scholar
[23]
Gavin A C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868): 141–147
CrossRef Pubmed Google scholar
[24]
Habelhah H, Shah K, Huang L, Burlingame A L, Shokat K M, Ronai Z (2001). Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J Biol Chem, 276(21): 18090–18095
CrossRef Pubmed Google scholar
[25]
Huang S Y, Tsai M L, Chen G Y, Wu C J, Chen S H (2007). A systematic MS-based approach for identifying invitro substrates of PKA and PKG in rat uteri. J Proteome Res, 6(7): 2674–2684
CrossRef Pubmed Google scholar
[26]
Huang Y, Houston N L, Tovar-Mendez A, Stevenson S E, Miernyk J A, Randall D D, Thelen J J (2010). A quantitative mass spectrometry-based approach for identifying protein kinase clients and quantifying kinase activity. Anal Biochem, 402(1): 69–76
CrossRef Pubmed Google scholar
[27]
Hunter T (2000). Signaling—2000 and beyond. Cell, 100(1): 113–127
CrossRef Pubmed Google scholar
[28]
Iliuk A B, Martin V A, Alicie B M, Geahlen R L, Tao W A (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics, 9(10): 2162–2172
CrossRef Pubmed Google scholar
[29]
Jeong J S, Jiang L Z, Albino E, Marrero J, Rho H S, Hu J F, Hu S H, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A, Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, 11(6): 016253
CrossRef Pubmed Google scholar
[30]
Jiang W, Jimenez G, Wells N J, Hope T J, Wahl G M, Hunter T, Fukunaga R (1998). PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell, 2(6): 877–885
CrossRef Pubmed Google scholar
[31]
Jin L L, Tong J F, Prakash A, Peterman S M, St-Germain J R, Taylor P, Trudel S, Moran M F (2010). Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res, 9(5): 2752–2761
CrossRef Pubmed Google scholar
[32]
Johnson S A, Hunter T (2005). Kinomics: methods for deciphering the kinome. Nat Methods, 2(1): 17–25
CrossRef Pubmed Google scholar
[33]
Kettenbach A N, Schweppe D K, Faherty B K, Pechenick D, Pletnev A A, Gerber S A (2011). Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal, 4(179): rs5
CrossRef Pubmed Google scholar
[34]
Khati M, Pillay T S (2004). Phosphotyrosine phosphoepitopes can be rapidly analyzed by coexpression of a tyrosine kinase in bacteria with a T7 bacteriophage display library. Anal Biochem, 325(1): 164–167
CrossRef Pubmed Google scholar
[35]
Kim M, Shin D S, Kim J, Lee Y S (2010). Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers, 94(6): 753–762
CrossRef Pubmed Google scholar
[36]
Kim Y G, Shin D S, Kim E M, Park H Y, Lee C S, Kim J H, Lee B S, Lee Y S, Kim B G (2007). High-throughput identification of substrate specificity for protein kinase by using an improved one-bead-one-compound library approach. Angew Chem Int Ed Engl, 46(28): 5408–5411
CrossRef Pubmed Google scholar
[37]
Knebel A, Morrice N, Cohen P (2001). A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J, 20(16): 4360–4369
CrossRef Pubmed Google scholar
[38]
Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics, 8(1): 81–94
CrossRef Pubmed Google scholar
[39]
Kreegipuu A, Blom N, Brunak S, Järv J (1998). Statistical analysis of protein kinase specificity determinants. FEBS Lett, 430(1-2): 45–50
CrossRef Pubmed Google scholar
[40]
Krogan N J, Cagney G, Yu H Y, Zhong G Q, Guo X H, Ignatchenko A, Li J, Pu S Y, Datta N, Tikuisis A P, Punna T, Peregrín-Alvarez J M, Shales M, Zhang X, Davey M, Robinson M D, Paccanaro A, Bray J E, Sheung A, Beattie B, Richards D P, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete M M, Vlasblom J, Wu S, Orsi C, Collins S R, Chandran S, Haw R, Rilstone J J, Gandi K, Thompson N J, Musso G, St Onge P, Ghanny S, Lam M H, Butland G, Altaf-Ul A M, Kanaya S, Shilatifard A, O’Shea E, Weissman J S, Ingles C J, Hughes T R, Parkinson J, Gerstein M, Wodak S J, Emili A, Greenblatt J F (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084): 637–643
CrossRef Pubmed Google scholar
[41]
Lam K S, Wu J Z, Lou Q (1995). Identification and characterization of a novel synthetic peptide substrate specific for Src-family protein tyrosine kinases. Int J Pept Protein Res, 45(6): 587–592
CrossRef Pubmed Google scholar
[42]
Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921
CrossRef Pubmed Google scholar
[43]
Leberer E, Thomas D Y, Whiteway M (1997). Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev, 7(1): 59–66
CrossRef Pubmed Google scholar
[44]
Lesaicherre M L, Uttamchandani M, Chen G Y J, Yao S Q (2002). Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett, 12(16): 2085–2088
CrossRef Pubmed Google scholar
[45]
Linding R, Jensen L J, Ostheimer G J, van Vugt M A, Jørgensen C, Miron I M, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park J G, Samson L D, Woodgett J R, Russell R B, Bork P, Yaffe M B, Pawson T (2007). Systematic discovery of in vivo phosphorylation networks. Cell, 129(7): 1415–1426
CrossRef Pubmed Google scholar
[46]
Lou Q, Leftwich M E, Lam K S (1996). Identification of GIYWHHY as a novel peptide substrate for human p60c-src protein tyrosine kinase. Bioorg Med Chem, 4(5): 677–682
CrossRef Pubmed Google scholar
[47]
Mah A S, Elia A E, Devgan G, Ptacek J, Schutkowski M, Snyder M, Yaffe M B, Deshaies R J (2005). Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem, 6(1): 22
CrossRef Pubmed Google scholar
[48]
Manning B D, Cantley L C (2002). Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE, 2002(162): pe49
CrossRef Pubmed Google scholar
[49]
Manning B D, Tee A R, Logsdon M N, Blenis J, Cantley L C (2002a). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell, 10(1): 151–162
CrossRef Pubmed Google scholar
[50]
Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002b). The protein kinase complement of the human genome. Science, 298(5600): 1912–1934
CrossRef Pubmed Google scholar
[51]
Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich O A, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber L A (2010). QIKS—Quantitative identification of kinase substrates. Proteomics, 10(10): 2015–2025
CrossRef Pubmed Google scholar
[52]
Neville D C, Rozanas C R, Price E M, Gruis D B, Verkman A S, Townsend R R (1997). Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci, 6(11): 2436–2445
CrossRef Pubmed Google scholar
[53]
Obenauer J C, Cantley L C, Yaffe M B (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res, 31(13): 3635–3641
CrossRef Pubmed Google scholar
[54]
Paradis S, Ruvkun G (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev, 12(16): 2488–2498
CrossRef Pubmed Google scholar
[55]
Pawson T (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 116(2): 191–203
CrossRef Pubmed Google scholar
[56]
Pillay T S (2004). A fisherman’s tale: Phage display as a discovery tool. Discov Med, 4(23): 315–318
Pubmed
[57]
Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 76(14): 3935–3943
CrossRef Pubmed Google scholar
[58]
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684
CrossRef Pubmed Google scholar
[59]
Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science, 287(5461): 2204–2215
CrossRef Pubmed Google scholar
[60]
Schmitz R, Baumann G, Gram H (1996). Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J Mol Biol, 260(5): 664–677
CrossRef Pubmed Google scholar
[61]
Sha D, Chin L S, Li L (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet, 19(2): 352–363
CrossRef Pubmed Google scholar
[62]
Shah K, Liu Y, Deirmengian C, Shokat K M (1997). Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci USA, 94(8): 3565–3570
CrossRef Pubmed Google scholar
[63]
Shin D S, Kim Y G, Kim E M, Kim M, Park H Y, Kim J H, Lee B S, Kim B G, Lee Y S (2008). Solid-phase peptide library synthesis on HiCore resin for screening substrate specificity of Brk protein tyrosine kinase. J Comb Chem, 10(1): 20–23
CrossRef Pubmed Google scholar
[64]
Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012). Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics, 11(10): 1070–1083
CrossRef Pubmed Google scholar
[65]
Songyang Z, Carraway K L 3rd, Eck M J, Harrison S C, Feldman R A, Mohammadi M, Schlessinger J, Hubbard S R, Smith D P, Eng C, Lorenzo M J, Ponder B A J, Mayer B J, Cantley L C (1995). Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature, 373(6514): 536–539
CrossRef Pubmed Google scholar
[66]
Songyang Z, Lu K P, Kwon Y T, Tsai L H, Filhol O, Cochet C, Brickey D A, Soderling T R, Bartleson C, Graves D J, DeMaggio A J, Hoekstra M F, Blenis J, Hunter T, Cantley L C (1996). A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol, 16(11): 6486–6493
Pubmed
[67]
Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver S G, Cyert M, Hughes T R, Boone C, Andrews B (2006). Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell, 21(3): 319–330
CrossRef Pubmed Google scholar
[68]
Staudinger J, Zhou J, Burgess R, Elledge S J, Olson E N (1995). PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol, 128(3): 263–271
CrossRef Pubmed Google scholar
[69]
Tien A C, Lin M H, Su L J, Hong Y R, Cheng T S, Lee Y C, Lin W J, Still I H, Huang C Y (2004). Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol Cell Proteomics, 3(1): 93–104
CrossRef Pubmed Google scholar
[70]
Troiani S, Uggeri M, Moll J, Isacchi A, Kalisz H M, Rusconi L, Valsasina B (2005). Searching for biomarkers of Aurora-A kinase activity: identification of in vitro substrates through a modified KESTREL approach. J Proteome Res, 4(4): 1296–1303
CrossRef Pubmed Google scholar
[71]
Vadlamudi R K, Li F, Adam L, Nguyen D, Ohta Y, Stossel T P, Kumar R (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol, 4(9): 681–690
CrossRef Pubmed Google scholar
[72]
Witze E S, Old W M, Resing K A, Ahn N G (2007). Mapping protein post-translational modifications with mass spectrometry. Nat Methods, 4(10): 798–806
CrossRef Pubmed Google scholar
[73]
Wu R H, Haas W, Dephoure N, Huttlin E L, Zhai B, Sowa M E, Gygi S P (2011). A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods, 8(8): 677–683
CrossRef Pubmed Google scholar
[74]
Xue L, Wang W H, Iliuk A, Hu L, Galan J A, Yu S, Hans M, Geahlen R L, Tao W A (2012). Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci USA, 109(15): 5615–5620
CrossRef Pubmed Google scholar
[75]
Yaffe M B, Leparc G G, Lai J, Obata T, Volinia S, Cantley L C (2001). A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol, 19(4): 348–353
CrossRef Pubmed Google scholar
[76]
Yang X, Hubbard E J, Carlson M (1992). A protein kinase substrate identified by the two-hybrid system. Science, 257(5070): 680–682
CrossRef Pubmed Google scholar
[77]
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105
CrossRef Pubmed Google scholar

Acknowledgment

This project has been funded in part by National Institutes of Health grant R01GM088317 and by National Institute of Food and Agriculture (NIFA).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(562 KB)

Accesses

Citations

Detail

Sections
Recommended

/