REVIEW

Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution

  • Blanca E. BARRERA-FIGUEROA 1 ,
  • Zhigang WU 2 ,
  • Renyi LIU , 2
Expand
  • 1. Departamento de Biotecnologia, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, Mexico
  • 2. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA

Received date: 19 Jan 2012

Accepted date: 10 Feb 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Abiotic stresses such as drought, cold, and high salinity are among the most adverse factors that affect plant growth and yield in the field. MicroRNAs are small RNA molecules that regulate gene expression in a sequence-specific manner and play an important role in plant stress response. Identifying abiotic stress-associated microRNAs and understanding their function will help develop new strategies for improvement of plant stress tolerance. Here we highlight recent advances in our understanding of abiotic stress-associated miRNAs in various plants, with focus on their discovery, expression analysis, and evolution.

Cite this article

Blanca E. BARRERA-FIGUEROA , Zhigang WU , Renyi LIU . Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Frontiers in Biology, 2013 , 8(2) : 189 -197 . DOI: 10.1007/s11515-012-1210-6

Acknowledgments

This work was supported in part by a USDA hatch fund (CA-R*-BPS-7754-H) to RL.
1
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15(1): 78–91

DOI PMID

2
Addo-Quaye C, Eshoo T W, Bartel D P, Axtell M J (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol, 18(10): 758–762

DOI PMID

3
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221

DOI PMID

4
Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 36(12): 1282–1290

DOI PMID

5
Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). A uniform system for microRNA annotation. RNA, 9(3): 277–279

DOI PMID

6
Audic S, Claverie J M (1997). The significance of digital gene expression profiles. Genome Res, 7(10): 986–995

PMID

7
Axtell M J, Bowman J L (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci, 13(7): 343–349

DOI PMID

8
Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19(6): 1750–1769

DOI PMID

9
Barrera-Figueroa B E, Gao L, Diop N N, Wu Z, Ehlers J D, Roberts P A, Close T J, Zhu J K, Liu R (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol, 11(1): 127

DOI PMID

10
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297

DOI PMID

11
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 101(31): 11511–11516

DOI PMID

12
Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7): 1279–1291

DOI PMID

13
Boyer J S (1982). Plant productivity and environment. Science, 218(4571): 443–448

DOI PMID

14
Bureau T E, Wessler S R (1992). Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 4(10): 1283–1294

PMID

15
Chen C, Tan R, Wong L, Fekete R, Halsey J (2011). Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol, 687: 113–134

DOI PMID

16
Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett, 579(26): 5923–5931

DOI PMID

17
Chinnusamy V, Zhu J K (2009). RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci, 52(4): 331–343

DOI PMID

18
Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2): 412–421

DOI PMID

19
Cuperus J T, Fahlgren N, Carrington J C (2011). Evolution and functional diversification of MIRNA genes. Plant Cell, 23(2): 431–442

DOI PMID

20
Dai X, Zhuang Z, Zhao P X (2011). Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform, 12(2): 115–121

DOI PMID

21
Dalmay T (2006). Short RNAs in environmental adaptation. Proc Biol Sci, 273(1594): 1579–1585

DOI PMID

22
Devers E A, Branscheid A, May P, Krajinski F (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in Arbuscular mycorrhizal symbiosis. Plant Physiol, 156(4): 1990–2010

DOI PMID

23
Dezulian T, Remmert M, Palatnik J F, Weigel D, Huson D H (2006). Identification of plant microRNA homologs. Bioinformatics, 22(3): 359–360

DOI PMID

24
Ding Y, Chen Z, Zhu C (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot, 62(10): 3563–3573

DOI PMID

25
Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219

DOI PMID

26
Fahlgren N, Jogdeo S, Kasschau K D, Sullivan C M, Chapman E J, Laubinger S, Smith L M, Dasenko M, Givan S A, Weigel D, Carrington J C (2010). MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 22(4): 1074–1089

DOI PMID

27
Felippes F F, Schneeberger K, Dezulian T, Huson D H, Weigel D (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA, 14(12): 2455–2459

DOI PMID

28
Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 10(1): 153

DOI PMID

29
German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 26(8): 941–946

DOI PMID

30
Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 23(4): 1512–1522

DOI PMID

31
Jacob F, Monod J (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 3(3): 318–356

DOI PMID

32
Jia X, Wang W X, Ren L, Chen Q J, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol, 71(1-2): 51–59

DOI PMID

33
Jiang N, Feschotte C, Zhang X, Wessler S R (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol, 7(2): 115–119

DOI PMID

34
Jin H, Vacic V, Girke T, Lonardi S, Zhu J K (2008). Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol, 9(1): 6

DOI PMID

35
Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V (2007). CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 35(Database Database issue): D829–D833

DOI PMID

36
Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6): 787–799

DOI PMID

37
Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 57(1): 19–53

DOI PMID

38
Joung J G, Fei Z (2009). Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics, 25(3): 387–393

DOI PMID

39
Kantar M, Lucas S J, Budak H (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233(3): 471–484

DOI PMID

40
Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 21(23): 3123–3134

DOI PMID

41
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25

DOI PMID

42
Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858–862

DOI PMID

43
Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell, 21(9): 2780–2796

DOI PMID

44
Li B, Qin Y, Duan H, Yin W, Xia X (2011a). Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot, 62(11): 3765–3779

DOI PMID

45
Li R, Yu C, Li Y, Lam T W, Yiu S M, Kristiansen K, Wang J (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15): 1966–1967

DOI PMID

46
Li W X, Oono Y, Zhu J, He X J, Wu J M, Iida K, Lu X Y, Cui X, Jin H, Zhu J K (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 20(8): 2238–2251

DOI PMID

47
Li Y, Li C, Xia J, Jin Y (2011b). Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE, 6(5): e19212

DOI PMID

48
Li Y F, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M J, Zhang W, Sunkar R (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J, 62(5): 742–759

DOI PMID

49
Lindow M, Krogh A (2005). Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics, 6(1): 119

DOI PMID

50
Liu B, Liu L, Tsykin A, Goodall G J, Green J E, Zhu M, Kim C H, Li J (2010). Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 26(24): 3105–3111

DOI PMID

51
Liu H H, Tian X, Li Y J, Wu C A, Zheng C C (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14(5): 836–843

DOI PMID

52
Llave C, Franco-Zorrilla J M, Solano R, Barajas D (2011). Target validation of plant microRNAs. Methods Mol Biol, 732: 187–208

DOI PMID

53
Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7): 1605–1619

DOI PMID

54
Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J (2008a). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA, 105(12): 4951–4956

DOI PMID

55
Lu C, Kulkarni K, Souret F F, MuthuValliappan R, Tej S S, Poethig R S, Henderson I R, Jacobsen S E, Wang W, Green P J, Meyers B C (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res, 16(10): 1276–1288

DOI PMID

56
Lu C, Meyers B C, Green P J (2007). Construction of small RNA cDNA libraries for deep sequencing. Methods, 43(2): 110–117

DOI PMID

57
Lu C, Tej S S, Luo S J, Haudenschild C D, Meyers B C, Green P J (2005a). Elucidation of the small RNA component of the transcriptome. Science, 309(5740): 1567–1569

DOI PMID

58
Lu S, Sun Y H, Chiang V L (2008b). Stress-responsive microRNAs in Populus. Plant J, 55(1): 131–151

DOI PMID

59
Lu S, Sun Y H, Shi R, Clark C, Li L, Chiang V L (2005b). Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 17(8): 2186–2203

DOI PMID

60
McCormick K P, Willmann M R, Meyers B C (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence, 2(1): 2

DOI PMID

61
Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G (2006). MicroRNA promoter element discovery in Arabidopsis. RNA, 12(9): 1612–1619

DOI PMID

62
Mendes N D, Freitas A T, Sagot M F (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res, 37(8): 2419–2433

DOI PMID

63
Meng Y, Shao C, Chen M (2011). Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform, 12(6): 645–659

DOI PMID

64
Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S, Jacobsen S E, Mallory A C, Martienssen R A, Poethig R S, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J K (2008). Criteria for annotation of plant MicroRNAs. Plant Cell, 20(12): 3186–3190

DOI PMID

65
Nobuta K, Venu R C, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W Z, Pillay M, Green P J, Wang G L, Meyers B C (2007). An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol, 25(4): 473–477

DOI PMID

66
Pak J, Fire A (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science, 315(5809): 241–244

DOI PMID

67
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J, 62(6): 960–976

PMID

68
Piriyapongsa J, Jordan I K (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 14(5): 814–821

DOI PMID

69
Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbüchle O, Harshman K (2010). Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques, 48(3): 219–222

DOI PMID

70
Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24): 3407–3425

DOI PMID

71
Reinhart B J, Bartel D P (2002). Small RNAs correspond to centromere heterochromatic repeats. Science, 297(5588): 1831

DOI PMID

72
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110(4): 513–520

DOI PMID

73
Robinson M D, McCarthy D J, Smyth G K (2010). EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140

DOI PMID

74
Ron M, Alandete Saez M, Eshed Williams L, Fletcher J C, McCormick S (2010). Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev, 24(10): 1010–1021

DOI PMID

75
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 31(3): 279–292

DOI PMID

76
Song Q X, Liu Y F, Hu X Y, Zhang W K, Ma B, Chen S Y, Zhang J S (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol, 11(1): 5

DOI PMID

77
Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397–1411

DOI PMID

78
Sunkar R, Jagadeeswaran G (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 8(1): 37

DOI PMID

79
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065

DOI PMID

80
Sunkar R, Zhou X F, Zheng Y, Zhang W X, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8(1): 25

DOI PMID

81
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019

DOI PMID

82
Szittya G, Moxon S, Santos D M, Jing R, Fevereiro M P, Moulton V, Dalmay T (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 9(1): 593

DOI PMID

83
Valdés-López O, Yang S S, Aparicio-Fabre R, Graham P H, Reyes J L, Vance C P, Hernández G (2010). MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol, 187(3): 805–818

DOI PMID

84
Vaucheret H (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 20(7): 759–771

DOI PMID

85
Vazquez F, Legrand S, Windels D (2010). The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci, 15(6): 337–345

DOI PMID

86
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79

DOI PMID

87
Vigneault F, Sismour A M, Church G M (2008). Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods, 5(9): 777–779

DOI PMID

88
Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9): R65

DOI PMID

89
Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 9(4): 499–511

DOI PMID

90
Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice MicroRNA effector complexes and targets. Plant Cell, 21(11): 3421–3435

DOI PMID

91
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell, 38(3): 465–475

DOI PMID

92
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol, 138(4): 2145–2154

DOI PMID

93
Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011). PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics, 27(10): 1368–1376

DOI PMID

94
Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A (2006). Conservation and divergence of plant microRNA genes. Plant J, 46(2): 243–259

DOI PMID

95
Zhang J Y, Xu Y Y, Huan Q, Chong K (2009a). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 10(1): 449

DOI PMID

96
Zhang L F, Chia J M, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D (2009b). A genome-wide characterization of microRNA genes in maize. PLoS Genet, 5(11): e1000716

DOI PMID

97
Zhao M, Ding H, Zhu J K, Zhang F, Li W X (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol, 190(4): 906–915

DOI PMID

98
Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53(1): 247–273

DOI PMID

99
Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 18(9): 1456–1465

DOI PMID

Outlines

/