Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution

Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU

PDF(224 KB)
PDF(224 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (2) : 189-197. DOI: 10.1007/s11515-012-1210-6
REVIEW
REVIEW

Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution

Author information +
History +

Abstract

Abiotic stresses such as drought, cold, and high salinity are among the most adverse factors that affect plant growth and yield in the field. MicroRNAs are small RNA molecules that regulate gene expression in a sequence-specific manner and play an important role in plant stress response. Identifying abiotic stress-associated microRNAs and understanding their function will help develop new strategies for improvement of plant stress tolerance. Here we highlight recent advances in our understanding of abiotic stress-associated miRNAs in various plants, with focus on their discovery, expression analysis, and evolution.

Keywords

microRNA / abiotic stress / epigenetics / gene expression / evolution

Cite this article

Download citation ▾
Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. Front Biol, 2013, 8(2): 189‒197 https://doi.org/10.1007/s11515-012-1210-6

References

[1]
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15(1): 78–91
CrossRef Pubmed Google scholar
[2]
Addo-Quaye C, Eshoo T W, Bartel D P, Axtell M J (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol, 18(10): 758–762
CrossRef Pubmed Google scholar
[3]
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2): 207–221
CrossRef Pubmed Google scholar
[4]
Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 36(12): 1282–1290
CrossRef Pubmed Google scholar
[5]
Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). A uniform system for microRNA annotation. RNA, 9(3): 277–279
CrossRef Pubmed Google scholar
[6]
Audic S, Claverie J M (1997). The significance of digital gene expression profiles. Genome Res, 7(10): 986–995
Pubmed
[7]
Axtell M J, Bowman J L (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci, 13(7): 343–349
CrossRef Pubmed Google scholar
[8]
Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19(6): 1750–1769
CrossRef Pubmed Google scholar
[9]
Barrera-Figueroa B E, Gao L, Diop N N, Wu Z, Ehlers J D, Roberts P A, Close T J, Zhu J K, Liu R (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol, 11(1): 127
CrossRef Pubmed Google scholar
[10]
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297
CrossRef Pubmed Google scholar
[11]
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA, 101(31): 11511–11516
CrossRef Pubmed Google scholar
[12]
Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7): 1279–1291
CrossRef Pubmed Google scholar
[13]
Boyer J S (1982). Plant productivity and environment. Science, 218(4571): 443–448
CrossRef Pubmed Google scholar
[14]
Bureau T E, Wessler S R (1992). Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 4(10): 1283–1294
Pubmed
[15]
Chen C, Tan R, Wong L, Fekete R, Halsey J (2011). Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol, 687: 113–134
CrossRef Pubmed Google scholar
[16]
Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett, 579(26): 5923–5931
CrossRef Pubmed Google scholar
[17]
Chinnusamy V, Zhu J K (2009). RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci, 52(4): 331–343
CrossRef Pubmed Google scholar
[18]
Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18(2): 412–421
CrossRef Pubmed Google scholar
[19]
Cuperus J T, Fahlgren N, Carrington J C (2011). Evolution and functional diversification of MIRNA genes. Plant Cell, 23(2): 431–442
CrossRef Pubmed Google scholar
[20]
Dai X, Zhuang Z, Zhao P X (2011). Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform, 12(2): 115–121
CrossRef Pubmed Google scholar
[21]
Dalmay T (2006). Short RNAs in environmental adaptation. Proc Biol Sci, 273(1594): 1579–1585
CrossRef Pubmed Google scholar
[22]
Devers E A, Branscheid A, May P, Krajinski F (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in Arbuscular mycorrhizal symbiosis. Plant Physiol, 156(4): 1990–2010
CrossRef Pubmed Google scholar
[23]
Dezulian T, Remmert M, Palatnik J F, Weigel D, Huson D H (2006). Identification of plant microRNA homologs. Bioinformatics, 22(3): 359–360
CrossRef Pubmed Google scholar
[24]
Ding Y, Chen Z, Zhu C (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot, 62(10): 3563–3573
CrossRef Pubmed Google scholar
[25]
Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2(2): e219
CrossRef Pubmed Google scholar
[26]
Fahlgren N, Jogdeo S, Kasschau K D, Sullivan C M, Chapman E J, Laubinger S, Smith L M, Dasenko M, Givan S A, Weigel D, Carrington J C (2010). MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 22(4): 1074–1089
CrossRef Pubmed Google scholar
[27]
Felippes F F, Schneeberger K, Dezulian T, Huson D H, Weigel D (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA, 14(12): 2455–2459
CrossRef Pubmed Google scholar
[28]
Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 10(1): 153
CrossRef Pubmed Google scholar
[29]
German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 26(8): 941–946
CrossRef Pubmed Google scholar
[30]
Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 23(4): 1512–1522
CrossRef Pubmed Google scholar
[31]
Jacob F, Monod J (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol, 3(3): 318–356
CrossRef Pubmed Google scholar
[32]
Jia X, Wang W X, Ren L, Chen Q J, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol, 71(1-2): 51–59
CrossRef Pubmed Google scholar
[33]
Jiang N, Feschotte C, Zhang X, Wessler S R (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol, 7(2): 115–119
CrossRef Pubmed Google scholar
[34]
Jin H, Vacic V, Girke T, Lonardi S, Zhu J K (2008). Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol, 9(1): 6
CrossRef Pubmed Google scholar
[35]
Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V (2007). CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 35(Database Database issue): D829–D833
CrossRef Pubmed Google scholar
[36]
Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6): 787–799
CrossRef Pubmed Google scholar
[37]
Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 57(1): 19–53
CrossRef Pubmed Google scholar
[38]
Joung J G, Fei Z (2009). Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics, 25(3): 387–393
CrossRef Pubmed Google scholar
[39]
Kantar M, Lucas S J, Budak H (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233(3): 471–484
CrossRef Pubmed Google scholar
[40]
Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev, 21(23): 3123–3134
CrossRef Pubmed Google scholar
[41]
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25
CrossRef Pubmed Google scholar
[42]
Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858–862
CrossRef Pubmed Google scholar
[43]
Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell, 21(9): 2780–2796
CrossRef Pubmed Google scholar
[44]
Li B, Qin Y, Duan H, Yin W, Xia X (2011a). Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot, 62(11): 3765–3779
CrossRef Pubmed Google scholar
[45]
Li R, Yu C, Li Y, Lam T W, Yiu S M, Kristiansen K, Wang J (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15): 1966–1967
CrossRef Pubmed Google scholar
[46]
Li W X, Oono Y, Zhu J, He X J, Wu J M, Iida K, Lu X Y, Cui X, Jin H, Zhu J K (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 20(8): 2238–2251
CrossRef Pubmed Google scholar
[47]
Li Y, Li C, Xia J, Jin Y (2011b). Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE, 6(5): e19212
CrossRef Pubmed Google scholar
[48]
Li Y F, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M J, Zhang W, Sunkar R (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J, 62(5): 742–759
CrossRef Pubmed Google scholar
[49]
Lindow M, Krogh A (2005). Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics, 6(1): 119
CrossRef Pubmed Google scholar
[50]
Liu B, Liu L, Tsykin A, Goodall G J, Green J E, Zhu M, Kim C H, Li J (2010). Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 26(24): 3105–3111
CrossRef Pubmed Google scholar
[51]
Liu H H, Tian X, Li Y J, Wu C A, Zheng C C (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14(5): 836–843
CrossRef Pubmed Google scholar
[52]
Llave C, Franco-Zorrilla J M, Solano R, Barajas D (2011). Target validation of plant microRNAs. Methods Mol Biol, 732: 187–208
CrossRef Pubmed Google scholar
[53]
Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7): 1605–1619
CrossRef Pubmed Google scholar
[54]
Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J (2008a). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA, 105(12): 4951–4956
CrossRef Pubmed Google scholar
[55]
Lu C, Kulkarni K, Souret F F, MuthuValliappan R, Tej S S, Poethig R S, Henderson I R, Jacobsen S E, Wang W, Green P J, Meyers B C (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res, 16(10): 1276–1288
CrossRef Pubmed Google scholar
[56]
Lu C, Meyers B C, Green P J (2007). Construction of small RNA cDNA libraries for deep sequencing. Methods, 43(2): 110–117
CrossRef Pubmed Google scholar
[57]
Lu C, Tej S S, Luo S J, Haudenschild C D, Meyers B C, Green P J (2005a). Elucidation of the small RNA component of the transcriptome. Science, 309(5740): 1567–1569
CrossRef Pubmed Google scholar
[58]
Lu S, Sun Y H, Chiang V L (2008b). Stress-responsive microRNAs in Populus. Plant J, 55(1): 131–151
CrossRef Pubmed Google scholar
[59]
Lu S, Sun Y H, Shi R, Clark C, Li L, Chiang V L (2005b). Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 17(8): 2186–2203
CrossRef Pubmed Google scholar
[60]
McCormick K P, Willmann M R, Meyers B C (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence, 2(1): 2
CrossRef Pubmed Google scholar
[61]
Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G (2006). MicroRNA promoter element discovery in Arabidopsis. RNA, 12(9): 1612–1619
CrossRef Pubmed Google scholar
[62]
Mendes N D, Freitas A T, Sagot M F (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res, 37(8): 2419–2433
CrossRef Pubmed Google scholar
[63]
Meng Y, Shao C, Chen M (2011). Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform, 12(6): 645–659
CrossRef Pubmed Google scholar
[64]
Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S, Jacobsen S E, Mallory A C, Martienssen R A, Poethig R S, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J K (2008). Criteria for annotation of plant MicroRNAs. Plant Cell, 20(12): 3186–3190
CrossRef Pubmed Google scholar
[65]
Nobuta K, Venu R C, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W Z, Pillay M, Green P J, Wang G L, Meyers B C (2007). An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol, 25(4): 473–477
CrossRef Pubmed Google scholar
[66]
Pak J, Fire A (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science, 315(5809): 241–244
CrossRef Pubmed Google scholar
[67]
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J, 62(6): 960–976
Pubmed
[68]
Piriyapongsa J, Jordan I K (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 14(5): 814–821
CrossRef Pubmed Google scholar
[69]
Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbüchle O, Harshman K (2010). Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques, 48(3): 219–222
CrossRef Pubmed Google scholar
[70]
Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24): 3407–3425
CrossRef Pubmed Google scholar
[71]
Reinhart B J, Bartel D P (2002). Small RNAs correspond to centromere heterochromatic repeats. Science, 297(5588): 1831
CrossRef Pubmed Google scholar
[72]
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110(4): 513–520
CrossRef Pubmed Google scholar
[73]
Robinson M D, McCarthy D J, Smyth G K (2010). EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140
CrossRef Pubmed Google scholar
[74]
Ron M, Alandete Saez M, Eshed Williams L, Fletcher J C, McCormick S (2010). Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev, 24(10): 1010–1021
CrossRef Pubmed Google scholar
[75]
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 31(3): 279–292
CrossRef Pubmed Google scholar
[76]
Song Q X, Liu Y F, Hu X Y, Zhang W K, Ma B, Chen S Y, Zhang J S (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol, 11(1): 5
CrossRef Pubmed Google scholar
[77]
Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17(5): 1397–1411
CrossRef Pubmed Google scholar
[78]
Sunkar R, Jagadeeswaran G (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 8(1): 37
CrossRef Pubmed Google scholar
[79]
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18(8): 2051–2065
CrossRef Pubmed Google scholar
[80]
Sunkar R, Zhou X F, Zheng Y, Zhang W X, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8(1): 25
CrossRef Pubmed Google scholar
[81]
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8): 2001–2019
CrossRef Pubmed Google scholar
[82]
Szittya G, Moxon S, Santos D M, Jing R, Fevereiro M P, Moulton V, Dalmay T (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 9(1): 593
CrossRef Pubmed Google scholar
[83]
Valdés-López O, Yang S S, Aparicio-Fabre R, Graham P H, Reyes J L, Vance C P, Hernández G (2010). MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol, 187(3): 805–818
CrossRef Pubmed Google scholar
[84]
Vaucheret H (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 20(7): 759–771
CrossRef Pubmed Google scholar
[85]
Vazquez F, Legrand S, Windels D (2010). The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci, 15(6): 337–345
CrossRef Pubmed Google scholar
[86]
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16(1): 69–79
CrossRef Pubmed Google scholar
[87]
Vigneault F, Sismour A M, Church G M (2008). Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods, 5(9): 777–779
CrossRef Pubmed Google scholar
[88]
Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9): R65
CrossRef Pubmed Google scholar
[89]
Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 9(4): 499–511
CrossRef Pubmed Google scholar
[90]
Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice MicroRNA effector complexes and targets. Plant Cell, 21(11): 3421–3435
CrossRef Pubmed Google scholar
[91]
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell, 38(3): 465–475
CrossRef Pubmed Google scholar
[92]
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol, 138(4): 2145–2154
CrossRef Pubmed Google scholar
[93]
Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011). PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics, 27(10): 1368–1376
CrossRef Pubmed Google scholar
[94]
Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A (2006). Conservation and divergence of plant microRNA genes. Plant J, 46(2): 243–259
CrossRef Pubmed Google scholar
[95]
Zhang J Y, Xu Y Y, Huan Q, Chong K (2009a). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 10(1): 449
CrossRef Pubmed Google scholar
[96]
Zhang L F, Chia J M, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D (2009b). A genome-wide characterization of microRNA genes in maize. PLoS Genet, 5(11): e1000716
CrossRef Pubmed Google scholar
[97]
Zhao M, Ding H, Zhu J K, Zhang F, Li W X (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol, 190(4): 906–915
CrossRef Pubmed Google scholar
[98]
Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53(1): 247–273
CrossRef Pubmed Google scholar
[99]
Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 18(9): 1456–1465
CrossRef Pubmed Google scholar

Acknowledgments

This work was supported in part by a USDA hatch fund (CA-R*-BPS-7754-H) to RL.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(224 KB)

Accesses

Citations

Detail

Sections
Recommended

/