REVIEW

The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease

  • Abiodun AJAYI ,
  • Xin YU ,
  • Anna-Lena STRÖM
Expand
  • Department of Neurochemistry, Stockholm University, 10691 Stockholm, Sweden

Received date: 01 Sep 2012

Accepted date: 23 Nov 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.

Cite this article

Abiodun AJAYI , Xin YU , Anna-Lena STRÖM . The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Frontiers in Biology, 2013 , 8(2) : 175 -188 . DOI: 10.1007/s11515-012-1250-y

1
Abeti R, Abramov A Y, Duchen M R (2011). Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain, 134(Pt 6): 1658-1672

DOI PMID

2
Abramov A Y, Canevari L, Duchen M R (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci, 24(2): 565-575

DOI PMID

3
Abramov A Y, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen M R (2005). Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci, 25(40): 9176-9184

DOI PMID

4
Ajayi A, Yu X, Lindberg S, Langel U, Ström A L (2012). Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci, 13(1): 86

DOI PMID

5
Amaral J D, Xavier J M, Steer C J, Rodrigues C M (2010). The role of p53 in apoptosis. Discov Med, 9(45): 145-152

PMID

6
Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy A G (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology, 28(5): 988-997

DOI PMID

7
Ansari M A, Scheff S W (2011). NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med, 51(1): 171-178

DOI PMID

8
Atkins C M, Sweatt J D (1999). Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. J Neurosci, 19(17): 7241-7248

PMID

9
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K H (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem, 279(44): 46065-46072

DOI PMID

10
Barber S C, Shaw P J (2010). Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med, 48(5): 629-641

DOI PMID

11
Barger S W, Goodwin M E, Porter M M, Beggs M L (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem, 101(5): 1205-1213

DOI PMID

12
Barnham K J, Masters C L, Bush A I (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3(3): 205-214

DOI PMID

13
Bäumer A T, Ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S (2008). Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem, 283(12): 7864-7876

DOI PMID

14
Bedard K, Krause K H (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 87(1): 245-313

DOI PMID

15
Benarroch E E (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 80(10): 1326-1338

DOI PMID

16
Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo M R, Porcellini A, Avvedimento V E (2011). Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem, 286(6): 4727-4741

DOI PMID

17
Bhatt L, Groeger G, McDermott K, Cotter T G (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Mol Vis, 16: 283-293

PMID

18
Bianca V D, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999). beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem, 274(22): 15493-15499

DOI PMID

19
Block M L, Zecca L, Hong J S (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 8(1): 57-69

DOI PMID

20
Boillée S, Yamanaka K, Lobsiger C S, Copeland N G, Jenkins N A, Kassiotis G, Kollias G, Cleveland D W (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 312(5778): 1389-1392

DOI PMID

21
Bokoch G M, Diebold B, Kim J S, Gianni D (2009). Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases. Antioxid Redox Signal, 11(10): 2429-2441

DOI PMID

22
Brennan A M, Suh S W, Won S J, Narasimhan P, Kauppinen T M, Lee H, Edling Y, Chan P H, Swanson R A (2009). NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci, 12(7): 857-863

DOI PMID

23
Brown D I, Griendling K K (2009). Nox proteins in signal transduction. Free Radic Biol Med, 47(9): 1239-1253

DOI PMID

24
Bruce-Keller A J, Gupta S, Knight A G, Beckett T L, McMullen J M, Davis P R, Murphy M P, Van Eldik L J, St Clair D, Keller J N (2011). Cognitive impairment in humanized APP×PS1 mice is linked to Aβ(1-2) and NOX activation. Neurobiol Dis, 44(3): 317-326

DOI PMID

25
Bruce-Keller A J, Gupta S, Parrino T E, Knight A G, Ebenezer P J, Weidner A M, LeVine H 3rd, Keller J N, Markesbery W R (2010). NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal, 12(12): 1371-1382

DOI PMID

26
Caunt C J, Keyse S M (2012) Dual-specificity MAP kinase phosphatases (MKPs). FEBS J.

DOI

27
Cavaliere F, Urra O, Alberdi E, Matute C (2012). Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death Dis, 3(2): e268

DOI PMID

28
Chaitanya G V, Steven A J, Babu P P (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal, 8(1): 31

DOI PMID

29
Chen K, Craige S E, Keaney J F Jr (2009). Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal, 11(10): 2467-2480

DOI PMID

30
Cheng G, Ritsick D, Lambeth J D (2004). Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem, 279(33): 34250-34255

DOI PMID

31
Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause K H, Mallat M (2008). Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci, 28(46): 12039-12051

DOI PMID

32
Choi S H, Aid S, Kim H W, Jackson S H, Bosetti F (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem, 120(2): 292-301

DOI PMID

33
Coraci I S, Husemann J, Berman J W, Hulette C, Dufour J H, Campanella G K, Luster A D, Silverstein S C, El-Khoury J B (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol, 160(1): 101-112

DOI PMID

34
Costa R O, Lacor P N, Ferreira I L, Resende R, Auberson Y P, Klein W L, Oliveira C R, Rego A C, Pereira C M (2012). Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell, 11(5): 823-833

DOI PMID

35
Coyoy A, Valencia A, Guemez-Gamboa A, Morán J (2008). Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons. Free Radic Biol Med, 45(8): 1056-1064

DOI PMID

36
Cristóvão A C, Choi D H, Baltazar G, Beal M F, Kim Y S (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal, 11(9): 2105-2118

DOI PMID

37
Cross A R (2000). p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J, 349(Pt 1): 113-117

DOI PMID

38
Damiano S, Fusco R, Morano A, De Mizio M, Paternò R, De Rosa A, Spinelli R, Amente S, Frunzio R, Mondola P, Miot F, Laccetti P, Santillo M, Avvedimento E V (2012). Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS ONE, 7(4): e34405

DOI PMID

39
DeLeo F R, Allen L A, Apicella M, Nauseef W M (1999). NADPH oxidase activation and assembly during phagocytosis. J Immunol, 163(12): 6732-6740

PMID

40
DeLeo F R, Burritt J B, Yu L, Jesaitis A J, Dinauer M C, Nauseef W M (2000). Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem, 275(18): 13986-13993

DOI PMID

41
Di Maio R, Mastroberardino P G, Hu X, Montero L, Greenamyre J T (2011). Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis, 42(3): 482-495

DOI PMID

42
Dickinson B C, Peltier J, Stone D, Schaffer D V, Chang C J (2011). Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol, 7(2): 106-112

DOI PMID

43
Diebold B A, Bokoch G M (2001). Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol, 2(3): 211-215

DOI PMID

44
Dumont M, Stack C, Elipenhali C, Calingasan N Y, Wille E, Beal M F (2011). Apocynin administration does not improve behavioral and neuropathological deficits in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett, 492(3): 150-154

DOI PMID

45
Dunckley T, Huentelman M J, Craig D W, Pearson J V, Szelinger S, Joshipura K, Halperin R F, Stamper C, Jensen K R, Letizia D, Hesterlee S E, Pestronk A, Levine T, Bertorini T, Graves M C, Mozaffar T, Jackson C E, Bosch P, McVey A, Dick A, Barohn R, Lomen-Hoerth C, Rosenfeld J, O’connor D T, Zhang K, Crook R, Ryberg H, Hutton M, Katz J, Simpson E P, Mitsumoto H, Bowser R, Miller R G, Appel S H, Stephan D A (2007). Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med, 357(8): 775-788

DOI PMID

46
Dvorakova M, Höhler B, Richter E, Burritt J B, Kummer W (1999). Rat sensory neurons contain cytochrome b558 large subunit immunoreactivity. Neuroreport, 10(12): 2615-2617

DOI PMID

47
Fatokun A A, Stone T W, Smith R A (2008). Oxidative stress in neurodegeneration and available means of protection. Front Biosci, 13(13): 3288-3311

DOI PMID

48
Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci.

49
Gao H M, Zhou H, Hong J S (2012). NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci, 33(6): 295-303

DOI PMID

50
Girouard H, Wang G, Gallo E F, Anrather J, Zhou P, Pickel V M, Iadecola C (2009). NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci, 29(8): 2545-2552

DOI PMID

51
Gough D R, Cotter T G (2011). Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis, 2(10): e213

DOI PMID

52
Grasberger H, Refetoff S (2006). Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem, 281(27): 18269-18272

DOI PMID

53
Grimm S, Hoehn A, Davies K J, Grune T (2011). Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res, 45(1): 73-88

DOI PMID

54
Groeger G, Mackey A M, Pettigrew C A, Bhatt L, Cotter T G (2009). Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J Neurochem, 109(5): 1544-1554

DOI PMID

55
Groemping Y, Rittinger K (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J, 386(Pt 3): 401-416

DOI PMID

56
Halliwell B (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 18(9): 685-716

DOI PMID

57
Han C H, Freeman J L, Lee T, Motalebi S A, Lambeth J D (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J Biol Chem, 273(27): 16663-16668

DOI PMID

58
Harraz M M, Marden J J, Zhou W, Zhang Y, Williams A, Sharov V S, Nelson K, Luo M, Paulson H, Schöneich C, Engelhardt J F (2008). SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest, 118(2): 659-670

PMID

59
Harrigan T J, Abdullaev I F, Jourd’heuil D, Mongin A A (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem, 106(6): 2449-2462

DOI PMID

60
He Y, Cui J, Lee J C, Ding S, Chalimoniuk M, Simonyi A, Sun A Y, Gu Z, Weisman G A, Wood W G, Sun G Y (2011). Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro, 3(1): e00050

DOI PMID

61
Heumüller S, Wind S, Barbosa-Sicard E, Schmidt H H, Busse R, Schröder K, Brandes R P (2008). Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension, 51(2): 211-217

DOI PMID

62
Hsieh H L, Lin C C, Shih R H, Hsiao L D, Yang C M (2012). NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation, 9(1): 110

DOI PMID

63
Huang J, Hitt N D, Kleinberg M E (1995). Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry, 34(51): 16753-16757

DOI PMID

64
Huo Y, Rangarajan P, Ling E A, Dheen S T (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci, 12(1): 49

DOI PMID

65
Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C (2006). NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med, 40(10): 1785-1795

DOI PMID

66
Jana A, Pahan K (2004). Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem, 279(49): 51451-51459

DOI PMID

67
Jiang F, Zhang Y, Dusting G J (2011). NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev, 63(1): 218-242

DOI PMID

68
Kahles T, Brandes R P (2012) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for Nox 2. Antioxid Redox Signal.

DOI

69
Katsuyama M, Matsuno K, Yabe-Nishimura C (2012). Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr, 50(1): 9-22

DOI PMID

70
Kauppinen T M, Swanson R A (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience, 145(4): 1267-1272

DOI PMID

71
Kawahara T, Ritsick D, Cheng G, Lambeth J D (2005). Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem, 280(36): 31859-31869

DOI PMID

72
Kettenmann H, Hanisch U K, Noda M, Verkhratsky A (2011). Physiology of microglia. Physiol Rev, 91(2): 461-553

DOI PMID

73
Kishida K T, Hoeffer C A, Hu D, Pao M, Holland S M, Klann E (2006). Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol, 26(15): 5908-5920

DOI PMID

74
Kishida K T, Pao M, Holland S M, Klann E (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem, 94(2): 299-306

DOI PMID

75
Kiss P J, Knisz J, Zhang Y, Baltrusaitis J, Sigmund C D, Thalmann R, Smith R J, Verpy E, Bánfi B (2006). Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol, 16(2): 208-213

DOI PMID

76
Knapp L T, Klann E (2002). Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res, 70(1): 1-7

DOI PMID

77
Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999). Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem, 274(35): 25051-25060

DOI PMID

78
Lapouge K, Smith S J, Groemping Y, Rittinger K (2002). Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem, 277(12): 10121-10128

DOI PMID

79
Lapouge K, Smith S J, Walker P A, Gamblin S J, Smerdon S J, Rittinger K (2000). Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell, 6(4): 899-907

PMID

80
Lavigne M C, Malech H L, Holland S M, Leto T L (2001). Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J, 15(2): 285-287

PMID

81
Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause K H (2009). NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun, 1(6): 570-581

DOI PMID

82
Li Q, Spencer N Y, Pantazis N J, Engelhardt J F (2011). Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem, 286(46): 40151-40162

DOI PMID

83
Liu Q, Kang J H, Zheng R L (2005). NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Cell Biochem Funct, 23(2): 93-100

DOI PMID

84
Liu Y, Hao W, Dawson A, Liu S, Fassbender K (2009). Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. J Biol Chem, 284(6): 3691-3699

DOI PMID

85
Lull M E, Levesque S, Surace M J, Block M L (2011). Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS ONE, 6(5): e20153

DOI PMID

86
Mackey A M, Sanvicens N, Groeger G, Doonan F, Wallace D, Cotter T G (2008). Redox survival signalling in retina-derived 661W cells. Cell Death Differ, 15(8): 1291-1303

DOI PMID

87
Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J L, Oster T, Pillot T (2006). Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis, 23(1): 178-189

DOI PMID

88
Maldonado P D, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J (2010). NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res, 88(3): 620-629

PMID

89
Mander P K, Jekabsone A, Brown G C (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol, 176(2): 1046-1052

PMID

90
Marden J J, Harraz M M, Williams A J, Nelson K, Luo M, Paulson H, Engelhardt J F (2007). Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest, 117(10): 2913-2919

DOI PMID

91
Markowitz A J, White M G, Kolson D L, Jordan-Sciutto K L (2007). Cellular interplay between neurons and glia: toward a comprehensive mechanism for excitotoxic neuronal loss in neurodegeneration. Cellscience, 4(1): 111-146

PMID

92
Martyn K D, Frederick L M, von Loehneysen K, Dinauer M C, Knaus U G (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal, 18(1): 69-82

DOI PMID

93
Massaad C A, Klann E (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal, 14(10): 2013-2054

DOI PMID

94
Mizuki K, Kadomatsu K, Hata K, Ito T, Fan Q W, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H (1998). Functional modules and expression of mouse p40(phox) and p67(phox), SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem, 251(3): 573-582

DOI PMID

95
Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto T L (2009). Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J, 23(4): 1205-1218

DOI PMID

96
Moreira P I, Zhu X, Wang X, Lee H G, Nunomura A, Petersen R B, Perry G, Smith M A (2010). Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta, 1802(1): 212-220

DOI PMID

97
Munnamalai V, Suter D M (2009). Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. J Neurochem, 108(3): 644-661

DOI PMID

98
Nauseef W M (2004). Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol, 122(4): 277-291

DOI PMID

99
Nisimoto Y, Motalebi S, Han C H, Lambeth J D (1999). The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem, 274(33): 22999-23005

DOI PMID

100
Nitti M, Furfaro A L, Cevasco C, Traverso N, Marinari U M, Pronzato M A, Domenicotti C (2010). PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal, 22(5): 828-835

DOI PMID

101
Noh K M, Koh J Y (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci, 20(23): RC111

PMID

102
Ostman A, Frijhoff J, Sandin A, Böhmer F D (2011). Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem, 150(4): 345-356

DOI PMID

103
Pandey D, Fulton D J (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol Heart Circ Physiol, 300(4): H1336-H1344

DOI PMID

104
Pandey D, Gratton J P, Rafikov R, Black S M, Fulton D J (2011). Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol Pharmacol, 80(3): 407-415

DOI PMID

105
Pao M, Wiggs E A, Anastacio M M, Hyun J, DeCarlo E S, Miller J T, Anderson V L, Malech H L, Gallin J I, Holland S M (2004). Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics, 45(3): 230-234

DOI PMID

106
Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris E H, Younkin L, Younkin S, Carlson G, McEwen B S, Iadecola C (2008). Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA, 105(4): 1347-1352

DOI PMID

107
Parkos C A, Dinauer M C, Jesaitis A J, Orkin S H, Curnutte J T (1989). Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood, 73(6): 1416-1420

PMID

108
Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res, 77(4): 540-551

DOI PMID

109
Puntambekar P, Mukherjea D, Jajoo S, Ramkumar V (2005). Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem, 95(6): 1689-1703

DOI PMID

110
Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause K H (2006). A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging, 27(11): 1577-1587

DOI PMID

111
Rebola N, Srikumar B N, Mulle C (2010). Activity-dependent synaptic plasticity of NMDA receptors. J Physiol, 588(Pt 1): 93-99

DOI PMID

112
Reinhardt H C, Schumacher B (2012). The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet, 28(3): 128-136

DOI PMID

113
Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont J E, Corvilain B, Miot F, De Deken X (2009). Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem, 284(11): 6725-6734

DOI PMID

114
Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F (2008). Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem, 283(12): 7983-7993

DOI PMID

115
Sankarapandi S, Zweier J L, Mukherjee G, Quinn M T, Huso D L (1998). Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase-dependent pathway. Arch Biochem Biophys, 353(2): 312-321

DOI PMID

116
Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M C, Pick E (2004). Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem, 279(16): 16007-16016

DOI PMID

117
Savchenko V L (2012). Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res,

DOI

118
Sedeek M, Montezano A C, Hebert R L, Gray S P, Di Marco E, Jha J C, Cooper M E, Jandeleit-Dahm K, Schiffrin E L, Wilkinson-Berka J L, Touyz R M (2012). Oxidative stress, Nox isoforms and complications of diabetes—potential targets for novel therapies. J Cardiovasc Transl Res, 5(4): 509-518

DOI PMID

119
Serrano F, Kolluri N S, Wientjes F B, Card J P, Klann E (2003). NADPH oxidase immunoreactivity in the mouse brain. Brain Res, 988(1-2): 193-198

DOI PMID

120
Shelat P B, Chalimoniuk M, Wang J H, Strosznajder J B, Lee J C, Sun A Y, Simonyi A, Sun G Y (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem, 106(1): 45-55

DOI PMID

121
Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith M A, Fujimoto S (2000). Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun, 273(1): 5-9

DOI PMID

122
Sorce S, Krause K H, Jaquet V (2012). Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci, 69(14): 2387-2407

DOI PMID

123
Stolk J, Hiltermann T J, Dijkman J H, Verhoeven A J (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol, 11(1): 95-102

PMID

124
Strosznajder J B, Czapski G A, Adamczyk A, Strosznajder R P (2012). Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol, 46(1): 78-84

DOI PMID

125
Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996). Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem, 271(36): 22152-22158

DOI PMID

126
Sumimoto H, Miyano K, Takeya R (2005). Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun, 338(1): 677-686

DOI PMID

127
Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem, 275(18): 13175-13178

DOI PMID

128
Szaingurten-Solodkin I, Hadad N, Levy R (2009). Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia, 57(16): 1727-1740

DOI PMID

129
Tammariello S P, Quinn M T, Estus S (2000). NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci, 20(1): RC53

PMID

130
Tejada-Simon M V, Serrano F, Villasana L E, Kanterewicz B I, Wu G Y, Quinn M T, Klann E (2005). Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci, 29(1): 97-106

DOI PMID

131
Traynelis S F, Wollmuth L P, McBain C J, Menniti F S, Vance K M, Ogden K K, Hansen K B, Yuan H, Myers S J, Dingledine R (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev, 62(3): 405-496

DOI PMID

132
Trumbull K A, McAllister D, Gandelman M M, Fung W Y, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman J S (2012). Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis, 45(1): 137-144

DOI PMID

133
Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005). The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem, 280(24): 23328-23339

DOI PMID

134
Verkhratsky A, Parpura V (2010). Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin, 31(9): 1044-1054

DOI PMID

135
Wilkinson B L, Cramer P E, Varvel N H, Reed-Geaghan E, Jiang Q, Szabo A, Herrup K, Lamb B T, Landreth G E (2012). Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol Aging, 33:197e21-197e32.

136
Wu D C, Ré D B, Nagai M, Ischiropoulos H, Przedborski S (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA, 103(32): 12132-12137

DOI PMID

137
Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA, 100(10): 6145-6150

DOI PMID

138
Zawada W M, Banninger G P, Thornton J, Marriott B, Cantu D, Rachubinski A L, Das M, Griffin W S, Jones S M (2011). Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation, 8(1): 129

DOI PMID

139
Zhang D, Hu X, Qian L, Chen S H, Zhou H, Wilson B, Miller D S, Hong J S (2011). Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation, 8(1): 3

DOI PMID

140
Zhang W, Wang T, Pei Z, Miller D S, Wu X, Block M L, Wilson B, Zhang W, Zhou Y, Hong J S, Zhang J (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J, 19(6): 533-542

DOI PMID

141
Zhou H, Zhang F, Chen S H, Zhang D, Wilson B, Hong J S, Gao H M (2012). Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med, 52(2): 303-313

DOI PMID

142
Zhu D, Hu C, Sheng W, Tan K S, Haidekker M A, Sun A Y, Sun G Y, Lee J C (2009). NAD(P)H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochem J, 421(2): 201-210

DOI PMID

143
Zhu D, Lai Y, Shelat P B, Hu C, Sun G Y, Lee J C (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci, 26(43): 11111-11119

DOI PMID

Outlines

/