The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease

Abiodun AJAYI, Xin YU, Anna-Lena STRÖM

PDF(430 KB)
PDF(430 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (2) : 175-188. DOI: 10.1007/s11515-012-1250-y
REVIEW
REVIEW

The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease

Author information +
History +

Abstract

Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.

Keywords

neurodegeneration / oxidative stress / NADPH oxidase / microglia / inflammation

Cite this article

Download citation ▾
Abiodun AJAYI, Xin YU, Anna-Lena STRÖM. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease. Front Biol, 2013, 8(2): 175‒188 https://doi.org/10.1007/s11515-012-1250-y

References

[1]
Abeti R, Abramov A Y, Duchen M R (2011). Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain, 134(Pt 6): 1658-1672
CrossRef Pubmed Google scholar
[2]
Abramov A Y, Canevari L, Duchen M R (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci, 24(2): 565-575
CrossRef Pubmed Google scholar
[3]
Abramov A Y, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen M R (2005). Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci, 25(40): 9176-9184
CrossRef Pubmed Google scholar
[4]
Ajayi A, Yu X, Lindberg S, Langel U, Ström A L (2012). Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci, 13(1): 86
CrossRef Pubmed Google scholar
[5]
Amaral J D, Xavier J M, Steer C J, Rodrigues C M (2010). The role of p53 in apoptosis. Discov Med, 9(45): 145-152
Pubmed
[6]
Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy A G (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology, 28(5): 988-997
CrossRef Pubmed Google scholar
[7]
Ansari M A, Scheff S W (2011). NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med, 51(1): 171-178
CrossRef Pubmed Google scholar
[8]
Atkins C M, Sweatt J D (1999). Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. J Neurosci, 19(17): 7241-7248
Pubmed
[9]
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K H (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem, 279(44): 46065-46072
CrossRef Pubmed Google scholar
[10]
Barber S C, Shaw P J (2010). Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med, 48(5): 629-641
CrossRef Pubmed Google scholar
[11]
Barger S W, Goodwin M E, Porter M M, Beggs M L (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem, 101(5): 1205-1213
CrossRef Pubmed Google scholar
[12]
Barnham K J, Masters C L, Bush A I (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 3(3): 205-214
CrossRef Pubmed Google scholar
[13]
Bäumer A T, Ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S (2008). Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem, 283(12): 7864-7876
CrossRef Pubmed Google scholar
[14]
Bedard K, Krause K H (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 87(1): 245-313
CrossRef Pubmed Google scholar
[15]
Benarroch E E (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 80(10): 1326-1338
CrossRef Pubmed Google scholar
[16]
Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo M R, Porcellini A, Avvedimento V E (2011). Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem, 286(6): 4727-4741
CrossRef Pubmed Google scholar
[17]
Bhatt L, Groeger G, McDermott K, Cotter T G (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Mol Vis, 16: 283-293
Pubmed
[18]
Bianca V D, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999). beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem, 274(22): 15493-15499
CrossRef Pubmed Google scholar
[19]
Block M L, Zecca L, Hong J S (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 8(1): 57-69
CrossRef Pubmed Google scholar
[20]
Boillée S, Yamanaka K, Lobsiger C S, Copeland N G, Jenkins N A, Kassiotis G, Kollias G, Cleveland D W (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 312(5778): 1389-1392
CrossRef Pubmed Google scholar
[21]
Bokoch G M, Diebold B, Kim J S, Gianni D (2009). Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases. Antioxid Redox Signal, 11(10): 2429-2441
CrossRef Pubmed Google scholar
[22]
Brennan A M, Suh S W, Won S J, Narasimhan P, Kauppinen T M, Lee H, Edling Y, Chan P H, Swanson R A (2009). NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci, 12(7): 857-863
CrossRef Pubmed Google scholar
[23]
Brown D I, Griendling K K (2009). Nox proteins in signal transduction. Free Radic Biol Med, 47(9): 1239-1253
CrossRef Pubmed Google scholar
[24]
Bruce-Keller A J, Gupta S, Knight A G, Beckett T L, McMullen J M, Davis P R, Murphy M P, Van Eldik L J, St Clair D, Keller J N (2011). Cognitive impairment in humanized APP×PS1 mice is linked to Aβ(1-2) and NOX activation. Neurobiol Dis, 44(3): 317-326
CrossRef Pubmed Google scholar
[25]
Bruce-Keller A J, Gupta S, Parrino T E, Knight A G, Ebenezer P J, Weidner A M, LeVine H 3rd, Keller J N, Markesbery W R (2010). NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal, 12(12): 1371-1382
CrossRef Pubmed Google scholar
[26]
Caunt C J, Keyse S M (2012) Dual-specificity MAP kinase phosphatases (MKPs). FEBS J.
CrossRef Google scholar
[27]
Cavaliere F, Urra O, Alberdi E, Matute C (2012). Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death Dis, 3(2): e268
CrossRef Pubmed Google scholar
[28]
Chaitanya G V, Steven A J, Babu P P (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal, 8(1): 31
CrossRef Pubmed Google scholar
[29]
Chen K, Craige S E, Keaney J F Jr (2009). Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal, 11(10): 2467-2480
CrossRef Pubmed Google scholar
[30]
Cheng G, Ritsick D, Lambeth J D (2004). Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem, 279(33): 34250-34255
CrossRef Pubmed Google scholar
[31]
Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause K H, Mallat M (2008). Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci, 28(46): 12039-12051
CrossRef Pubmed Google scholar
[32]
Choi S H, Aid S, Kim H W, Jackson S H, Bosetti F (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem, 120(2): 292-301
CrossRef Pubmed Google scholar
[33]
Coraci I S, Husemann J, Berman J W, Hulette C, Dufour J H, Campanella G K, Luster A D, Silverstein S C, El-Khoury J B (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol, 160(1): 101-112
CrossRef Pubmed Google scholar
[34]
Costa R O, Lacor P N, Ferreira I L, Resende R, Auberson Y P, Klein W L, Oliveira C R, Rego A C, Pereira C M (2012). Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell, 11(5): 823-833
CrossRef Pubmed Google scholar
[35]
Coyoy A, Valencia A, Guemez-Gamboa A, Morán J (2008). Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons. Free Radic Biol Med, 45(8): 1056-1064
CrossRef Pubmed Google scholar
[36]
Cristóvão A C, Choi D H, Baltazar G, Beal M F, Kim Y S (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal, 11(9): 2105-2118
CrossRef Pubmed Google scholar
[37]
Cross A R (2000). p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J, 349(Pt 1): 113-117
CrossRef Pubmed Google scholar
[38]
Damiano S, Fusco R, Morano A, De Mizio M, Paternò R, De Rosa A, Spinelli R, Amente S, Frunzio R, Mondola P, Miot F, Laccetti P, Santillo M, Avvedimento E V (2012). Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS ONE, 7(4): e34405
CrossRef Pubmed Google scholar
[39]
DeLeo F R, Allen L A, Apicella M, Nauseef W M (1999). NADPH oxidase activation and assembly during phagocytosis. J Immunol, 163(12): 6732-6740
Pubmed
[40]
DeLeo F R, Burritt J B, Yu L, Jesaitis A J, Dinauer M C, Nauseef W M (2000). Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem, 275(18): 13986-13993
CrossRef Pubmed Google scholar
[41]
Di Maio R, Mastroberardino P G, Hu X, Montero L, Greenamyre J T (2011). Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis, 42(3): 482-495
CrossRef Pubmed Google scholar
[42]
Dickinson B C, Peltier J, Stone D, Schaffer D V, Chang C J (2011). Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol, 7(2): 106-112
CrossRef Pubmed Google scholar
[43]
Diebold B A, Bokoch G M (2001). Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol, 2(3): 211-215
CrossRef Pubmed Google scholar
[44]
Dumont M, Stack C, Elipenhali C, Calingasan N Y, Wille E, Beal M F (2011). Apocynin administration does not improve behavioral and neuropathological deficits in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett, 492(3): 150-154
CrossRef Pubmed Google scholar
[45]
Dunckley T, Huentelman M J, Craig D W, Pearson J V, Szelinger S, Joshipura K, Halperin R F, Stamper C, Jensen K R, Letizia D, Hesterlee S E, Pestronk A, Levine T, Bertorini T, Graves M C, Mozaffar T, Jackson C E, Bosch P, McVey A, Dick A, Barohn R, Lomen-Hoerth C, Rosenfeld J, O’connor D T, Zhang K, Crook R, Ryberg H, Hutton M, Katz J, Simpson E P, Mitsumoto H, Bowser R, Miller R G, Appel S H, Stephan D A (2007). Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med, 357(8): 775-788
CrossRef Pubmed Google scholar
[46]
Dvorakova M, Höhler B, Richter E, Burritt J B, Kummer W (1999). Rat sensory neurons contain cytochrome b558 large subunit immunoreactivity. Neuroreport, 10(12): 2615-2617
CrossRef Pubmed Google scholar
[47]
Fatokun A A, Stone T W, Smith R A (2008). Oxidative stress in neurodegeneration and available means of protection. Front Biosci, 13(13): 3288-3311
CrossRef Pubmed Google scholar
[48]
Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci.
[49]
Gao H M, Zhou H, Hong J S (2012). NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci, 33(6): 295-303
CrossRef Pubmed Google scholar
[50]
Girouard H, Wang G, Gallo E F, Anrather J, Zhou P, Pickel V M, Iadecola C (2009). NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci, 29(8): 2545-2552
CrossRef Pubmed Google scholar
[51]
Gough D R, Cotter T G (2011). Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis, 2(10): e213
CrossRef Pubmed Google scholar
[52]
Grasberger H, Refetoff S (2006). Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem, 281(27): 18269-18272
CrossRef Pubmed Google scholar
[53]
Grimm S, Hoehn A, Davies K J, Grune T (2011). Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res, 45(1): 73-88
CrossRef Pubmed Google scholar
[54]
Groeger G, Mackey A M, Pettigrew C A, Bhatt L, Cotter T G (2009). Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J Neurochem, 109(5): 1544-1554
CrossRef Pubmed Google scholar
[55]
Groemping Y, Rittinger K (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J, 386(Pt 3): 401-416
CrossRef Pubmed Google scholar
[56]
Halliwell B (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 18(9): 685-716
CrossRef Pubmed Google scholar
[57]
Han C H, Freeman J L, Lee T, Motalebi S A, Lambeth J D (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J Biol Chem, 273(27): 16663-16668
CrossRef Pubmed Google scholar
[58]
Harraz M M, Marden J J, Zhou W, Zhang Y, Williams A, Sharov V S, Nelson K, Luo M, Paulson H, Schöneich C, Engelhardt J F (2008). SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest, 118(2): 659-670
Pubmed
[59]
Harrigan T J, Abdullaev I F, Jourd’heuil D, Mongin A A (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem, 106(6): 2449-2462
CrossRef Pubmed Google scholar
[60]
He Y, Cui J, Lee J C, Ding S, Chalimoniuk M, Simonyi A, Sun A Y, Gu Z, Weisman G A, Wood W G, Sun G Y (2011). Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro, 3(1): e00050
CrossRef Pubmed Google scholar
[61]
Heumüller S, Wind S, Barbosa-Sicard E, Schmidt H H, Busse R, Schröder K, Brandes R P (2008). Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension, 51(2): 211-217
CrossRef Pubmed Google scholar
[62]
Hsieh H L, Lin C C, Shih R H, Hsiao L D, Yang C M (2012). NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation, 9(1): 110
CrossRef Pubmed Google scholar
[63]
Huang J, Hitt N D, Kleinberg M E (1995). Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry, 34(51): 16753-16757
CrossRef Pubmed Google scholar
[64]
Huo Y, Rangarajan P, Ling E A, Dheen S T (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci, 12(1): 49
CrossRef Pubmed Google scholar
[65]
Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C (2006). NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med, 40(10): 1785-1795
CrossRef Pubmed Google scholar
[66]
Jana A, Pahan K (2004). Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem, 279(49): 51451-51459
CrossRef Pubmed Google scholar
[67]
Jiang F, Zhang Y, Dusting G J (2011). NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev, 63(1): 218-242
CrossRef Pubmed Google scholar
[68]
Kahles T, Brandes R P (2012) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for Nox 2. Antioxid Redox Signal.
CrossRef Google scholar
[69]
Katsuyama M, Matsuno K, Yabe-Nishimura C (2012). Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr, 50(1): 9-22
CrossRef Pubmed Google scholar
[70]
Kauppinen T M, Swanson R A (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience, 145(4): 1267-1272
CrossRef Pubmed Google scholar
[71]
Kawahara T, Ritsick D, Cheng G, Lambeth J D (2005). Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem, 280(36): 31859-31869
CrossRef Pubmed Google scholar
[72]
Kettenmann H, Hanisch U K, Noda M, Verkhratsky A (2011). Physiology of microglia. Physiol Rev, 91(2): 461-553
CrossRef Pubmed Google scholar
[73]
Kishida K T, Hoeffer C A, Hu D, Pao M, Holland S M, Klann E (2006). Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol, 26(15): 5908-5920
CrossRef Pubmed Google scholar
[74]
Kishida K T, Pao M, Holland S M, Klann E (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem, 94(2): 299-306
CrossRef Pubmed Google scholar
[75]
Kiss P J, Knisz J, Zhang Y, Baltrusaitis J, Sigmund C D, Thalmann R, Smith R J, Verpy E, Bánfi B (2006). Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol, 16(2): 208-213
CrossRef Pubmed Google scholar
[76]
Knapp L T, Klann E (2002). Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res, 70(1): 1-7
CrossRef Pubmed Google scholar
[77]
Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999). Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem, 274(35): 25051-25060
CrossRef Pubmed Google scholar
[78]
Lapouge K, Smith S J, Groemping Y, Rittinger K (2002). Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem, 277(12): 10121-10128
CrossRef Pubmed Google scholar
[79]
Lapouge K, Smith S J, Walker P A, Gamblin S J, Smerdon S J, Rittinger K (2000). Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell, 6(4): 899-907
Pubmed
[80]
Lavigne M C, Malech H L, Holland S M, Leto T L (2001). Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J, 15(2): 285-287
Pubmed
[81]
Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause K H (2009). NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun, 1(6): 570-581
CrossRef Pubmed Google scholar
[82]
Li Q, Spencer N Y, Pantazis N J, Engelhardt J F (2011). Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem, 286(46): 40151-40162
CrossRef Pubmed Google scholar
[83]
Liu Q, Kang J H, Zheng R L (2005). NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Cell Biochem Funct, 23(2): 93-100
CrossRef Pubmed Google scholar
[84]
Liu Y, Hao W, Dawson A, Liu S, Fassbender K (2009). Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. J Biol Chem, 284(6): 3691-3699
CrossRef Pubmed Google scholar
[85]
Lull M E, Levesque S, Surace M J, Block M L (2011). Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS ONE, 6(5): e20153
CrossRef Pubmed Google scholar
[86]
Mackey A M, Sanvicens N, Groeger G, Doonan F, Wallace D, Cotter T G (2008). Redox survival signalling in retina-derived 661W cells. Cell Death Differ, 15(8): 1291-1303
CrossRef Pubmed Google scholar
[87]
Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J L, Oster T, Pillot T (2006). Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis, 23(1): 178-189
CrossRef Pubmed Google scholar
[88]
Maldonado P D, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J (2010). NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res, 88(3): 620-629
Pubmed
[89]
Mander P K, Jekabsone A, Brown G C (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol, 176(2): 1046-1052
Pubmed
[90]
Marden J J, Harraz M M, Williams A J, Nelson K, Luo M, Paulson H, Engelhardt J F (2007). Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest, 117(10): 2913-2919
CrossRef Pubmed Google scholar
[91]
Markowitz A J, White M G, Kolson D L, Jordan-Sciutto K L (2007). Cellular interplay between neurons and glia: toward a comprehensive mechanism for excitotoxic neuronal loss in neurodegeneration. Cellscience, 4(1): 111-146
Pubmed
[92]
Martyn K D, Frederick L M, von Loehneysen K, Dinauer M C, Knaus U G (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal, 18(1): 69-82
CrossRef Pubmed Google scholar
[93]
Massaad C A, Klann E (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal, 14(10): 2013-2054
CrossRef Pubmed Google scholar
[94]
Mizuki K, Kadomatsu K, Hata K, Ito T, Fan Q W, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H (1998). Functional modules and expression of mouse p40(phox) and p67(phox), SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem, 251(3): 573-582
CrossRef Pubmed Google scholar
[95]
Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto T L (2009). Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J, 23(4): 1205-1218
CrossRef Pubmed Google scholar
[96]
Moreira P I, Zhu X, Wang X, Lee H G, Nunomura A, Petersen R B, Perry G, Smith M A (2010). Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta, 1802(1): 212-220
CrossRef Pubmed Google scholar
[97]
Munnamalai V, Suter D M (2009). Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. J Neurochem, 108(3): 644-661
CrossRef Pubmed Google scholar
[98]
Nauseef W M (2004). Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol, 122(4): 277-291
CrossRef Pubmed Google scholar
[99]
Nisimoto Y, Motalebi S, Han C H, Lambeth J D (1999). The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem, 274(33): 22999-23005
CrossRef Pubmed Google scholar
[100]
Nitti M, Furfaro A L, Cevasco C, Traverso N, Marinari U M, Pronzato M A, Domenicotti C (2010). PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal, 22(5): 828-835
CrossRef Pubmed Google scholar
[101]
Noh K M, Koh J Y (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci, 20(23): RC111
Pubmed
[102]
Ostman A, Frijhoff J, Sandin A, Böhmer F D (2011). Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem, 150(4): 345-356
CrossRef Pubmed Google scholar
[103]
Pandey D, Fulton D J (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol Heart Circ Physiol, 300(4): H1336-H1344
CrossRef Pubmed Google scholar
[104]
Pandey D, Gratton J P, Rafikov R, Black S M, Fulton D J (2011). Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol Pharmacol, 80(3): 407-415
CrossRef Pubmed Google scholar
[105]
Pao M, Wiggs E A, Anastacio M M, Hyun J, DeCarlo E S, Miller J T, Anderson V L, Malech H L, Gallin J I, Holland S M (2004). Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics, 45(3): 230-234
CrossRef Pubmed Google scholar
[106]
Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris E H, Younkin L, Younkin S, Carlson G, McEwen B S, Iadecola C (2008). Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA, 105(4): 1347-1352
CrossRef Pubmed Google scholar
[107]
Parkos C A, Dinauer M C, Jesaitis A J, Orkin S H, Curnutte J T (1989). Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood, 73(6): 1416-1420
Pubmed
[108]
Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res, 77(4): 540-551
CrossRef Pubmed Google scholar
[109]
Puntambekar P, Mukherjea D, Jajoo S, Ramkumar V (2005). Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem, 95(6): 1689-1703
CrossRef Pubmed Google scholar
[110]
Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause K H (2006). A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging, 27(11): 1577-1587
CrossRef Pubmed Google scholar
[111]
Rebola N, Srikumar B N, Mulle C (2010). Activity-dependent synaptic plasticity of NMDA receptors. J Physiol, 588(Pt 1): 93-99
CrossRef Pubmed Google scholar
[112]
Reinhardt H C, Schumacher B (2012). The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet, 28(3): 128-136
CrossRef Pubmed Google scholar
[113]
Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont J E, Corvilain B, Miot F, De Deken X (2009). Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem, 284(11): 6725-6734
CrossRef Pubmed Google scholar
[114]
Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F (2008). Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem, 283(12): 7983-7993
CrossRef Pubmed Google scholar
[115]
Sankarapandi S, Zweier J L, Mukherjee G, Quinn M T, Huso D L (1998). Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase-dependent pathway. Arch Biochem Biophys, 353(2): 312-321
CrossRef Pubmed Google scholar
[116]
Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M C, Pick E (2004). Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem, 279(16): 16007-16016
CrossRef Pubmed Google scholar
[117]
Savchenko V L (2012). Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res,
CrossRef Google scholar
[118]
Sedeek M, Montezano A C, Hebert R L, Gray S P, Di Marco E, Jha J C, Cooper M E, Jandeleit-Dahm K, Schiffrin E L, Wilkinson-Berka J L, Touyz R M (2012). Oxidative stress, Nox isoforms and complications of diabetes—potential targets for novel therapies. J Cardiovasc Transl Res, 5(4): 509-518
CrossRef Pubmed Google scholar
[119]
Serrano F, Kolluri N S, Wientjes F B, Card J P, Klann E (2003). NADPH oxidase immunoreactivity in the mouse brain. Brain Res, 988(1-2): 193-198
CrossRef Pubmed Google scholar
[120]
Shelat P B, Chalimoniuk M, Wang J H, Strosznajder J B, Lee J C, Sun A Y, Simonyi A, Sun G Y (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem, 106(1): 45-55
CrossRef Pubmed Google scholar
[121]
Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith M A, Fujimoto S (2000). Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun, 273(1): 5-9
CrossRef Pubmed Google scholar
[122]
Sorce S, Krause K H, Jaquet V (2012). Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci, 69(14): 2387-2407
CrossRef Pubmed Google scholar
[123]
Stolk J, Hiltermann T J, Dijkman J H, Verhoeven A J (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol, 11(1): 95-102
Pubmed
[124]
Strosznajder J B, Czapski G A, Adamczyk A, Strosznajder R P (2012). Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol, 46(1): 78-84
CrossRef Pubmed Google scholar
[125]
Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996). Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem, 271(36): 22152-22158
CrossRef Pubmed Google scholar
[126]
Sumimoto H, Miyano K, Takeya R (2005). Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun, 338(1): 677-686
CrossRef Pubmed Google scholar
[127]
Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem, 275(18): 13175-13178
CrossRef Pubmed Google scholar
[128]
Szaingurten-Solodkin I, Hadad N, Levy R (2009). Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia, 57(16): 1727-1740
CrossRef Pubmed Google scholar
[129]
Tammariello S P, Quinn M T, Estus S (2000). NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci, 20(1): RC53
Pubmed
[130]
Tejada-Simon M V, Serrano F, Villasana L E, Kanterewicz B I, Wu G Y, Quinn M T, Klann E (2005). Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci, 29(1): 97-106
CrossRef Pubmed Google scholar
[131]
Traynelis S F, Wollmuth L P, McBain C J, Menniti F S, Vance K M, Ogden K K, Hansen K B, Yuan H, Myers S J, Dingledine R (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev, 62(3): 405-496
CrossRef Pubmed Google scholar
[132]
Trumbull K A, McAllister D, Gandelman M M, Fung W Y, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman J S (2012). Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis, 45(1): 137-144
CrossRef Pubmed Google scholar
[133]
Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005). The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem, 280(24): 23328-23339
CrossRef Pubmed Google scholar
[134]
Verkhratsky A, Parpura V (2010). Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin, 31(9): 1044-1054
CrossRef Pubmed Google scholar
[135]
Wilkinson B L, Cramer P E, Varvel N H, Reed-Geaghan E, Jiang Q, Szabo A, Herrup K, Lamb B T, Landreth G E (2012). Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol Aging, 33:197e21-197e32.
[136]
Wu D C, Ré D B, Nagai M, Ischiropoulos H, Przedborski S (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA, 103(32): 12132-12137
CrossRef Pubmed Google scholar
[137]
Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA, 100(10): 6145-6150
CrossRef Pubmed Google scholar
[138]
Zawada W M, Banninger G P, Thornton J, Marriott B, Cantu D, Rachubinski A L, Das M, Griffin W S, Jones S M (2011). Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation, 8(1): 129
CrossRef Pubmed Google scholar
[139]
Zhang D, Hu X, Qian L, Chen S H, Zhou H, Wilson B, Miller D S, Hong J S (2011). Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation, 8(1): 3
CrossRef Pubmed Google scholar
[140]
Zhang W, Wang T, Pei Z, Miller D S, Wu X, Block M L, Wilson B, Zhang W, Zhou Y, Hong J S, Zhang J (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J, 19(6): 533-542
CrossRef Pubmed Google scholar
[141]
Zhou H, Zhang F, Chen S H, Zhang D, Wilson B, Hong J S, Gao H M (2012). Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med, 52(2): 303-313
CrossRef Pubmed Google scholar
[142]
Zhu D, Hu C, Sheng W, Tan K S, Haidekker M A, Sun A Y, Sun G Y, Lee J C (2009). NAD(P)H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochem J, 421(2): 201-210
CrossRef Pubmed Google scholar
[143]
Zhu D, Lai Y, Shelat P B, Hu C, Sun G Y, Lee J C (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci, 26(43): 11111-11119
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(430 KB)

Accesses

Citations

Detail

Sections
Recommended

/