REVIEW

The balancing act of AKT in T cells

  • Mary Catherine RENEER ,
  • Francesc MARTI
Expand
  • Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA

Received date: 13 Dec 2011

Accepted date: 04 Jan 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The serine/threonine-specific protein kinase AKT is gaining recognition as a major crossroad in numerous cellular signaling pathways through its ability to regulate cell differentiation, proliferation, survival and metabolism. This review focuses on the recent advances in AKT signaling and downstream events in T cells, emphasizing its contrasting role in conventional and regulatory (Treg) T cell populations. Activation of AKT has been known for many years to be critical in the development and function of conventional T cells. However, it has just recently been uncovered that AKT exerts an inhibitory effect on Treg generation and suppressor function. These studies have placed AKT at the nexus of Treg development and function, thus opening novel avenues for therapeutic manipulation.

Cite this article

Mary Catherine RENEER , Francesc MARTI . The balancing act of AKT in T cells[J]. Frontiers in Biology, 2013 , 8(2) : 160 -174 . DOI: 10.1007/s11515-012-1202-6

Acknowledgments

We thank M. Moliner for assistance with graphics. This work was partially supported by NIH Grant Numbers R03AR052904-02 from the NIAMS and 2P20 RR020171 from the NCRR to F.M. The authors declare no financial or commercial conflict of interest.
1
Akbar A N, Vukmanovic-Stejic M, Taams L S, Macallan D C (2007). The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol, 7(3): 231–237

DOI PMID

2
Alessi D R, Cohen P (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev, 8(1): 55–62

DOI PMID

3
Alessi D R, Pearce L R, García-Martínez J M (2009). New insights into mTOR signaling: mTORC2 and beyond. Sci Signal, 2(67): pe27

DOI PMID

4
Altomare D A, Guo K, Cheng J Q, Sonoda G, Walsh K, Testa J R (1995). Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene, 11(6): 1055–1060

PMID

5
Andjelković M, Jakubowicz T, Cron P, Ming X F, Han J W, Hemmings B A (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA, 93(12): 5699–5704

DOI PMID

6
Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa T C, Cumano A, Bandeira A (2001). CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol, 166(5): 3008–3018

PMID

6a
Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002). Origin of regulcdory T cells with known specificity for antigen. Nat Immunol, 3(8): 756–763

DOI PMID

7
Arimura Y, Shiroki F, Kuwahara S, Kato H, Dianzani U, Uchiyama T, Yagi J (2004). Akt is a neutral amplifier for Th cell differentiation. J Biol Chem, 279(12): 11408–11416

DOI PMID

8
Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes C P, Alessi D R (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol, 9(8): 393–404

DOI PMID

9
Beals C R, Sheridan C M, Turck C W, Gardner P, Crabtree G R (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science, 275(5308): 1930–1933

DOI PMID

10
Bellacosa A, Testa J R, Staal S P, Tsichlis P N (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 254(5029): 274–277

DOI PMID

11
Bluestone J A, Abbas A K (2003). Natural versus adaptive regulatory T cells. Nat Rev Immunol, 3(3): 253–257

DOI PMID

12
Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, Klein M, Schild H, Schmitt E, Stassen M (2005). NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J Exp Med, 201(2): 181–187

DOI PMID

13
Brodbeck D, Cron P, Hemmings B A (1999). A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem, 274(14): 9133–9136

DOI PMID

14
Brognard J, Sierecki E, Gao T, Newton A C (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 25(6): 917–931

DOI PMID

15
Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6): 857–868

DOI PMID

16
Brunkow M E, Jeffery E W, Hjerrild K A, Paeper B, Clark L B, Yasayko S A, Wilkinson J E, Galas D, Ziegler S F, Ramsdell F (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 27(1): 68–73

DOI PMID

17
Burgering B M, Coffer P J (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 376(6541): 599–602

DOI PMID

18
Burgering B M, Kops G J (2002). Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 27(7): 352–360

DOI PMID

19
Cantley L C, Neel B G (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA, 96(8): 4240–4245

DOI PMID

20
Cardone M H, Roy N, Stennicke H R, Salvesen G S, Franke T F, Stanbridge E, Frisch S, Reed J C (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282(5392): 1318–1321

DOI PMID

21
Carpenter C L, Cantley L C (1996). Phosphoinositide kinases. Curr Opin Cell Biol, 8(2): 153–158

DOI PMID

22
Chen C, Edelstein L C, Gélinas C (2000). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol, 20(8): 2687–2695

DOI PMID

23
Cheng J Q, Godwin A K, Bellacosa A, Taguchi T, Franke T F, Hamilton T C, Tsichlis P N, Testa J R (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA, 89(19): 9267–9271

DOI PMID

24
Coffer P J, Woodgett J R (1991). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem, 201(2): 475–481

DOI PMID

25
Conery A R, Cao Y, Thompson E A, Townsend C M Jr, Ko T C, Luo K (2004). Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol, 6(4): 366–372

DOI PMID

26
Coombes J L, Siddiqui K R, Arancibia-Cárcamo C V, Hall J, Sun C M, Belkaid Y, Powrie F (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med, 204(8): 1757–1764

DOI PMID

27
Crellin N K, Garcia R V, Levings M K (2007). Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 109(5): 2014–2022

DOI PMID

28
Datta S R, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg M E (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2): 231–241

DOI PMID

29
del Peso L, González-García M, Page C, Herrera R, Nuñez G (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278(5338): 687–689

DOI PMID

30
Du K, Montminy M (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 273(49): 32377–32379

DOI PMID

31
Duarte J H, Zelenay S, Bergman M L, Martins A C, Demengeot J (2009). Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol, 39(4): 948–955

DOI PMID

32
Dummler B, Hemmings B A (2007). Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans, 35(2): 231–235

DOI PMID

33
Feuerer M, Hill J A, Mathis D, Benoist C (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol, 10(7): 689–695

DOI PMID

34
Fontenot J D, Gavin M A, Rudensky A Y (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 4(4): 330–336

DOI PMID

35
Franke T F, Yang S I, Chan T O, Datta K, Kazlauskas A, Morrison D K, Kaplan D R, Tsichlis P N (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 81(5): 727–736

DOI PMID

36
Gao T, Furnari F, Newton A C (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell, 18(1): 13–24

DOI PMID

37
Godfrey D I, Kennedy J, Suda T, Zlotnik A (1993). A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol, 150(10): 4244–4252

PMID

38
Gregori S, Giarratana N, Smiroldo S, Adorini L (2003). Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol, 171(8): 4040–4047

PMID

39
Hagenbeek T J, Naspetti M, Malergue F, Garçon F, Nunès J A, Cleutjens K B, Trapman J, Krimpenfort P, Spits H (2004). The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med, 200(7): 883–894

DOI PMID

40
Hanada M, Feng J, Hemmings B A (2004). Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta, 1697(1-2): 3–16

PMID

41
Harrington L S, Findlay G M, Lamb R F (2005). Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci, 30(1): 35–42

DOI PMID

42
Haxhinasto S, Mathis D, Benoist C (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med, 205(3): 565–574

DOI PMID

43
Hill M M, Andjelkovic M, Brazil D P, Ferrari S, Fabbro D, Hemmings B A (2001). Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem, 276(28): 25643–25646

DOI PMID

44
Hinton H J, Alessi D R, Cantrell D A (2004). The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol, 5(5): 539–545

DOI PMID

45
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder P K, Pan B S, Kotani H (2010). MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther, 9(7): 1956–1967

DOI PMID

46
Hoffman K, Holmes F A, Fraschini G, Esparza L, Frye D, Raber M N, Newman R A, Hortobagyi G N (1996). Phase I-II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol, 37(3): 254–258

DOI PMID

47
Hori S (2010). Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol, 22(5): 575–582

DOI PMID

48
Hori S, Nomura T, Sakaguchi S (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609): 1057–1061

DOI PMID

49
Horwitz D A, Zheng S G, Gray J D (2008). Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol, 29(9): 429–435

DOI PMID

50
Huang J, Manning B D (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans, 37(1): 217–222

DOI PMID

51
Jefferies H B, Fumagalli S, Dennis P B, Reinhard C, Pearson R B, Thomas G (1997). Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J, 16(12): 3693–3704

DOI PMID

52
Jones P F, Jakubowicz T, Pitossi F J, Maurer F, Hemmings B A (1991). Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA, 88(10): 4171–4175

DOI PMID

53
Josefowicz S Z, Rudensky A (2009). Control of regulatory T cell lineage commitment and maintenance. Immunity, 30(5): 616–625

DOI PMID

54
Juntilla M M, Koretzky G A (2008). Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett, 116(2): 104–110

DOI PMID

55
Juntilla M M, Wofford J A, Birnbaum M J, Rathmell J C, Koretzky G A (2007). Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA, 104(29): 12105–12110

DOI PMID

56
Kandel E S, Hay N (1999). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res, 253(1): 210–229

DOI PMID

57
Kane L P, Andres P G, Howland K C, Abbas A K, Weiss A (2001). Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol, 2(1): 37–44

DOI PMID

58
Kane L P, Shapiro V S, Stokoe D, Weiss A (1999). Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol, 9(11): 601–604

DOI PMID

59
Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, Ohta T, Ichikawa H, Aburatani H, Tashiro F, Taya Y (2009). PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell, 136(3): 535–550

DOI PMID

60
Khattri R, Cox T, Yasayko S A, Ramsdell F (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 4(4): 337–342

DOI PMID

61
Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E (2000). The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol, 165(4): 1743–1754

PMID

62
King C G, Kobayashi T, Cejas P J, Kim T, Yoon K, Kim G K, Chiffoleau E, Hickman S P, Walsh P T, Turka L A, Choi Y (2006). TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med, 12(9): 1088–1092

DOI PMID

63
Kleijn M, Scheper G C, Voorma H O, Thomas A A (1998). Regulation of translation initiation factors by signal transduction. Eur J Biochem, 253(3): 531–544

DOI PMID

64
Kojima H, Kanno Y, Hase H, Kobata T (2005). CD4+CD25+ regulatory T cells attenuate the phosphatidylinositol 3-kinase/Akt pathway in antigen-primed immature CD8+ CTLs during functional maturation. J Immunol, 174(10): 5959–5967

PMID

65
Komatsu N, Mariotti-Ferrandiz M E, Wang Y, Malissen B, Waldmann H, Hori S (2009). Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA, 106(6): 1903–1908

DOI PMID

66
Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995). Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun, 216(2): 526–534

DOI PMID

67
Lafont V, Astoul E, Laurence A, Liautard J, Cantrell D (2000). The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Lett, 486(1): 38–42

DOI PMID

68
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson M A, Boothby M (2010). Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity, 32(6): 743–753

DOI PMID

69
Levelt C N, Carsetti R, Eichmann K (1993a). Regulation of thymocyte development through CD3. II. Expression of T cell receptor beta CD3 epsilon and maturation to the CD4+8+ stage are highly correlated in individual thymocytes. J Exp Med, 178(6): 1867–1875

DOI PMID

70
Levelt C N, Ehrfeld A, Eichmann K (1993b). Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3 epsilon determines clonal deletion or induction of developmental program. J Exp Med, 177(3): 707–716

DOI PMID

71
Liao Y, Hung M C (2004). A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells. Cancer Res, 64(17): 5938–5942

DOI PMID

72
Livolsi A, Busuttil V, Imbert V, Abraham R T, Peyron J F (2001). Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem, 268(5): 1508–1515

DOI PMID

73
Madrid L V, Wang C Y, Guttridge D C, Schottelius A J, Baldwin A S Jr, Mayo M W (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 20(5): 1626–1638

DOI PMID

74
Maira S M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, García-Echeverría C (2008). Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther, 7(7): 1851–1863

DOI PMID

75
Manning B D, Cantley L C (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7): 1261–1274

DOI PMID

76
Mao C, Tili E G, Dose M, Haks M C, Bear S E, Maroulakou I, Horie K, Gaitanaris G A, Fidanza V, Ludwig T, Wiest D L, Gounari F, Tsichlis P N (2007). Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J Immunol, 178(9): 5443–5453

PMID

77
Markman B, Dienstmann R, Tabernero J (2010). Targeting the PI3K/Akt/mTOR pathway—beyond rapalogs. Oncotarget, 1(7): 530–543

PMID

78
Marone R, Cmiljanovic V, Giese B, Wymann M P (2008). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta, 1784(1): 159–185

PMID

79
Mendoza M C, Blenis J (2007). PHLPPing it off: phosphatases get in the Akt. Mol Cell, 25(6): 798–800

DOI PMID

80
Monk C R, Spachidou M, Rovis F, Leung E, Botto M, Lechler R I, Garden O A (2005). MRL/Mp CD4+,CD25- T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum, 52(4): 1180–1184

DOI PMID

81
Nakatani K, Sakaue H, Thompson D A, Weigel R J, Roth R A (1999). Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun, 257(3): 906–910

DOI PMID

82
O’Reilly K E, Rojo F, She Q B, Solit D, Mills G B, Smith D, Lane H, Hofmann F, Hicklin D J, Ludwig D L, Baselga J, Rosen N (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 66(3): 1500–1508

DOI PMID

83
Obata T, Yaffe M B, Leparc G G, Piro E T, Maegawa H, Kashiwagi A, Kikkawa R, Cantley L C (2000). Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem, 275(46): 36108–36115

DOI PMID

84
Oldenhove G, Bouladoux N, Wohlfert E A, Hall J A, Chou D, Dos Santos L, O’Brien S, Blank R, Lamb E, Natarajan S, Kastenmayer R, Hunter C, Grigg M E, Belkaid Y (2009). Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity, 31(5): 772–786

DOI PMID

85
Ozes O N, Mayo L D, Gustin J A, Pfeffer S R, Pfeffer L M, Donner D B (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401(6748): 82–85

DOI PMID

86
Padmanabhan S, Mukhopadhyay A, Narasimhan S D, Tesz G, Czech M P, Tissenbaum H A (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell, 136(5): 939–951

DOI PMID

87
Pal S K, Reckamp K, Yu H, Figlin R A (2010). Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs, 19(11): 1355–1366

DOI PMID

88
Papiernik M, de Moraes M L, Pontoux C, Vasseur F, Pénit C (1998). Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol, 10(4): 371– 378

DOI PMID

89
Parry R V, Reif K, Smith G, Sansom D M, Hemmings B A, Ward S G (1997). Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J Immunol, 27(10): 2495–2501

DOI PMID

90
Patra A K, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, Serfling E, Bommhardt U H (2006). PKB rescues calcineurin/NFAT-induced arrest of Rag expression and pre-T cell differentiation. J Immunol, 177(7): 4567–4576

PMID

91
Patterson S J, Han J M, Garcia R, Assi K, Gao T, O’Neill A, Newton A C, Levings M K (2011). Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol, 186(10): 5533–5537

DOI PMID

92
Peifer C, Alessi D R (2008). Small-molecule inhibitors of PDK1. ChemMedChem, 3(12): 1810–1838

DOI PMID

93
Penit C, Vasseur F (1989). Cell proliferation and differentiation in the fetal and early postnatal mouse thymus. J Immunol, 142(10): 3369–3377

PMID

94
Pillai V, Karandikar N J (2007). Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett, 114(1): 9–15

DOI PMID

95
Pim D, Massimi P, Dilworth S M, Banks L (2005). Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene, 24(53): 7830–7838

DOI PMID

96
Rao A, Luo C, Hogan P G (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol, 15(1): 707–747

DOI PMID

97
Redpath N T, Foulstone E J, Proud C G (1996). Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J, 15(9): 2291–2297

PMID

98
Reid J M, Walden C A, Qin R, Ziegler K L, Haslam J L, Rajewski R A, Warndahl R, Fitting C L, Boring D, Szabo E, Crowell J, Perloff M, Jong L, Bauer B A, Mandrekar S J, Ames M M, Limburg P J, and the Cancer Prevention Network (2011). Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668. Cancer Prev Res (Phila), 4(3): 347–353

DOI PMID

99
Reif K, Burgering B M, Cantrell D A (1997). Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem, 272(22): 14426–14433

DOI PMID

100
Remy I, Montmarquette A, Michnick S W (2004). PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol, 6(4): 358–365

DOI PMID

101
Reneer M C, Estes D J, Velez-Ortega A C, Norris A, Mayer M, Marti F (2011). Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol, 41(11):3170–3175

102
Rengarajan J, Tang B, Glimcher L H (2002). NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naïve T(H)cells. Nat Immunol, 3(1): 48–54

DOI PMID

103
Rocher G, Letourneux C, Lenormand P, Porteu F (2007). Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem, 282(8): 5468–5477

DOI PMID

104
Roget K, Malissen M, Malbec O, Malissen B, Daëron M (2008). Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol, 180(6): 3689–3698

PMID

105
Romashkova J A, Makarov S S (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401(6748): 86–90

DOI PMID

106
Rondinone C M, Carvalho E, Wesslau C, Smith U P (1999). Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus. Diabetologia, 42(7): 819–825

DOI PMID

107
Rong S B, Hu Y, Enyedy I, Powis G, Meuillet E J, Wu X, Wang R, Wang S, Kozikowski A P (2001). Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J Med Chem, 44(6): 898–908

DOI PMID

108
Salomon B, Bluestone J A (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol, 19(1): 225–252

DOI PMID

109
Sarbassov D D, Guertin D A, Ali S M, Sabatini D M (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712): 1098–1101

DOI PMID

110
Sasaki T, Irie-Sasaki J, Jones R G, Oliveira-dos-Santos A J, Stanford W L, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T W, Ohashi P S, Suzuki A, Penninger J M (2000). Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science, 287(5455): 1040–1046

DOI PMID

111
Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight Z A, Cobb B S, Cantrell D, O’Connor E, Shokat K M, Fisher A G, Merkenschlager M (2008). T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA, 105(22): 7797–7802

DOI PMID

112
Shevach E M (2001). Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med, 193(11): F41–F46

DOI PMID

113
Shevach E M (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30(5): 636–645

DOI PMID

114
Shimoke K, Chiba H (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson’s disease. J Neurosci Res, 63(5): 402–409

DOI PMID

115
Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark G R (2002). Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem, 277(6): 3863–3869

DOI PMID

116
Song G, Ouyang G, Bao S (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 9(1): 59–71

DOI PMID

117
Song K, Wang H, Krebs T L, Danielpour D (2006). Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J, 25(1): 58–69

DOI PMID

118
Staal S P (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA, 84(14): 5034–5037

DOI PMID

119
Staal S P, Hartley J W, Rowe W P (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA, 74(7): 3065–3067

DOI PMID

120
Stahl M, Dijkers P F, Kops G J, Lens S M, Coffer P J, Burgering B M, Medema R H (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol, 168(10): 5024–5031

PMID

121
Stambolic V, Suzuki A, de la Pompa J L, Brothers G M, Mirtsos C, Sasaki T, Ruland J, Penninger J M, Siderovski D P, Mak T W (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95(1): 29–39

DOI PMID

122
Starr T K, Jameson S C, Hogquist K A (2003). Positive and negative selection of T cells. Annu Rev Immunol, 21(1): 139–176

DOI PMID

123
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura A J, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M (2009). The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell, 17(6): 800–810

DOI PMID

124
Tang Q, Bluestone J A (2008). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol, 9(3): 239–244

DOI PMID

125
Thomas C C, Deak M, Alessi D R, van Aalten D M (2002). High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol, 12(14): 1256–1262

DOI PMID

126
Turinsky J, Damrau-Abney A (1998). Akt1 kinase and dynamics of insulin resistance in denervated muscles in vivo. Am J Physiol, 275(5 Pt 2): R1425–R1430

PMID

127
Vignali D A, Collison L W, Workman C J (2008). How regulatory T cells work. Nat Rev Immunol, 8(7): 523–532

DOI PMID

128
Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 269(7): 5241–5248

PMID

129
Vukmanovic-Stejic M, Zhang Y, Cook J E, Fletcher J M, McQuaid A, Masters J E, Rustin M H, Taams L S, Beverley P C, Macallan D C, Akbar A N (2006). Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest, 116(9): 2423–2433

DOI PMID

130
Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson T J, Djuretic I M, Sundrud M S, Unutmaz D (2011). Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J Exp Med, 208(9): 1875–1887

DOI PMID

131
Wehrens E J, Mijnheer G, Duurland C L, Klein M, Meerding J, van Loosdregt J, de Jager W, Sawitzki B, Coffer PJ, Vastert B, Prakken B J, van Wijk F (2011). Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood, 118(13):3538–3548

132
Werlen G, Hausmann B, Naeher D, Palmer E (2003). Signaling life and death in the thymus: timing is everything. Science, 299(5614): 1859–1863

DOI PMID

133
Wiesinger D, Gubler H U, Haefliger W, Hauser D (1974). Antiinflammatory activity of the new mould metabolite 11-desacetoxy-wortmannin and of some of its derivatives. Experientia, 30(2): 135–136

DOI PMID

134
Workman C J, Szymczak-Workman A L, Collison L W, Pillai M R, Vignali D A (2009). The development and function of regulatory T cells. Cell Mol Life Sci, 66(16): 2603–2622

135
Xu L, Kitani A, Fuss I, Strober W (2007). Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol, 178(11): 6725–6729

PMID

136
Yang X O, Nurieva R, Martinez G J, Kang H S, Chung Y, Pappu B P, Shah B, Chang S H, Schluns K S, Watowich S S, Feng X H, Jetten A M, Dong C (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29(1): 44–56

DOI PMID

137
Yang Z Z, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings B A (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans, 32(2): 350–354

DOI PMID

138
You S, Belghith M, Cobbold S, Alyanakian M A, Gouarin C, Barriot S, Garcia C, Waldmann H, Bach J F, Chatenoud L (2005). Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes, 54(5): 1415–1422

DOI PMID

139
Yung H W, Charnock-Jones D S, Burton G J (2011). Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE, 6(3): e17894

DOI PMID

140
Zhou L, Lopes J E, Chong M M, Ivanov I I, Min R, Victora G D, Shen Y, Du J, Rubtsov Y P, Rudensky A Y, Ziegler S F, Littman D R (2008). TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453(7192): 236–240

DOI PMID

141
Ziegler S F (2006). FOXP3: of mice and men. Annu Rev Immunol, 24(1): 209–226

DOI PMID

Outlines

/