The balancing act of AKT in T cells
Mary Catherine RENEER, Francesc MARTI
The balancing act of AKT in T cells
The serine/threonine-specific protein kinase AKT is gaining recognition as a major crossroad in numerous cellular signaling pathways through its ability to regulate cell differentiation, proliferation, survival and metabolism. This review focuses on the recent advances in AKT signaling and downstream events in T cells, emphasizing its contrasting role in conventional and regulatory (Treg) T cell populations. Activation of AKT has been known for many years to be critical in the development and function of conventional T cells. However, it has just recently been uncovered that AKT exerts an inhibitory effect on Treg generation and suppressor function. These studies have placed AKT at the nexus of Treg development and function, thus opening novel avenues for therapeutic manipulation.
AKT / Tregs / T cell signaling / T cell differentiation
[1] |
Akbar A N, Vukmanovic-Stejic M, Taams L S, Macallan D C (2007). The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol, 7(3): 231–237
CrossRef
Pubmed
Google scholar
|
[2] |
Alessi D R, Cohen P (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev, 8(1): 55–62
CrossRef
Pubmed
Google scholar
|
[3] |
Alessi D R, Pearce L R, García-Martínez J M (2009). New insights into mTOR signaling: mTORC2 and beyond. Sci Signal, 2(67): pe27
CrossRef
Pubmed
Google scholar
|
[4] |
Altomare D A, Guo K, Cheng J Q, Sonoda G, Walsh K, Testa J R (1995). Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene, 11(6): 1055–1060
Pubmed
|
[5] |
Andjelković M, Jakubowicz T, Cron P, Ming X F, Han J W, Hemmings B A (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA, 93(12): 5699–5704
CrossRef
Pubmed
Google scholar
|
[6] |
Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa T C, Cumano A, Bandeira A (2001). CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol, 166(5): 3008–3018
Pubmed
|
[6a] |
Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002). Origin of regulcdory T cells with known specificity for antigen. Nat Immunol, 3(8): 756–763
CrossRef
Pubmed
Google scholar
|
[7] |
Arimura Y, Shiroki F, Kuwahara S, Kato H, Dianzani U, Uchiyama T, Yagi J (2004). Akt is a neutral amplifier for Th cell differentiation. J Biol Chem, 279(12): 11408–11416
CrossRef
Pubmed
Google scholar
|
[8] |
Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes C P, Alessi D R (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol, 9(8): 393–404
CrossRef
Pubmed
Google scholar
|
[9] |
Beals C R, Sheridan C M, Turck C W, Gardner P, Crabtree G R (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science, 275(5308): 1930–1933
CrossRef
Pubmed
Google scholar
|
[10] |
Bellacosa A, Testa J R, Staal S P, Tsichlis P N (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 254(5029): 274–277
CrossRef
Pubmed
Google scholar
|
[11] |
Bluestone J A, Abbas A K (2003). Natural versus adaptive regulatory T cells. Nat Rev Immunol, 3(3): 253–257
CrossRef
Pubmed
Google scholar
|
[12] |
Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, Klein M, Schild H, Schmitt E, Stassen M (2005). NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J Exp Med, 201(2): 181–187
CrossRef
Pubmed
Google scholar
|
[13] |
Brodbeck D, Cron P, Hemmings B A (1999). A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem, 274(14): 9133–9136
CrossRef
Pubmed
Google scholar
|
[14] |
Brognard J, Sierecki E, Gao T, Newton A C (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell, 25(6): 917–931
CrossRef
Pubmed
Google scholar
|
[15] |
Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6): 857–868
CrossRef
Pubmed
Google scholar
|
[16] |
Brunkow M E, Jeffery E W, Hjerrild K A, Paeper B, Clark L B, Yasayko S A, Wilkinson J E, Galas D, Ziegler S F, Ramsdell F (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 27(1): 68–73
CrossRef
Pubmed
Google scholar
|
[17] |
Burgering B M, Coffer P J (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 376(6541): 599–602
CrossRef
Pubmed
Google scholar
|
[18] |
Burgering B M, Kops G J (2002). Cell cycle and death control: long live Forkheads. Trends Biochem Sci, 27(7): 352–360
CrossRef
Pubmed
Google scholar
|
[19] |
Cantley L C, Neel B G (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA, 96(8): 4240–4245
CrossRef
Pubmed
Google scholar
|
[20] |
Cardone M H, Roy N, Stennicke H R, Salvesen G S, Franke T F, Stanbridge E, Frisch S, Reed J C (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282(5392): 1318–1321
CrossRef
Pubmed
Google scholar
|
[21] |
Carpenter C L, Cantley L C (1996). Phosphoinositide kinases. Curr Opin Cell Biol, 8(2): 153–158
CrossRef
Pubmed
Google scholar
|
[22] |
Chen C, Edelstein L C, Gélinas C (2000). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol, 20(8): 2687–2695
CrossRef
Pubmed
Google scholar
|
[23] |
Cheng J Q, Godwin A K, Bellacosa A, Taguchi T, Franke T F, Hamilton T C, Tsichlis P N, Testa J R (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA, 89(19): 9267–9271
CrossRef
Pubmed
Google scholar
|
[24] |
Coffer P J, Woodgett J R (1991). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem, 201(2): 475–481
CrossRef
Pubmed
Google scholar
|
[25] |
Conery A R, Cao Y, Thompson E A, Townsend C M Jr, Ko T C, Luo K (2004). Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol, 6(4): 366–372
CrossRef
Pubmed
Google scholar
|
[26] |
Coombes J L, Siddiqui K R, Arancibia-Cárcamo C V, Hall J, Sun C M, Belkaid Y, Powrie F (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med, 204(8): 1757–1764
CrossRef
Pubmed
Google scholar
|
[27] |
Crellin N K, Garcia R V, Levings M K (2007). Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 109(5): 2014–2022
CrossRef
Pubmed
Google scholar
|
[28] |
Datta S R, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg M E (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2): 231–241
CrossRef
Pubmed
Google scholar
|
[29] |
del Peso L, González-García M, Page C, Herrera R, Nuñez G (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278(5338): 687–689
CrossRef
Pubmed
Google scholar
|
[30] |
Du K, Montminy M (1998). CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 273(49): 32377–32379
CrossRef
Pubmed
Google scholar
|
[31] |
Duarte J H, Zelenay S, Bergman M L, Martins A C, Demengeot J (2009). Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol, 39(4): 948–955
CrossRef
Pubmed
Google scholar
|
[32] |
Dummler B, Hemmings B A (2007). Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans, 35(2): 231–235
CrossRef
Pubmed
Google scholar
|
[33] |
Feuerer M, Hill J A, Mathis D, Benoist C (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol, 10(7): 689–695
CrossRef
Pubmed
Google scholar
|
[34] |
Fontenot J D, Gavin M A, Rudensky A Y (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 4(4): 330–336
CrossRef
Pubmed
Google scholar
|
[35] |
Franke T F, Yang S I, Chan T O, Datta K, Kazlauskas A, Morrison D K, Kaplan D R, Tsichlis P N (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 81(5): 727–736
CrossRef
Pubmed
Google scholar
|
[36] |
Gao T, Furnari F, Newton A C (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell, 18(1): 13–24
CrossRef
Pubmed
Google scholar
|
[37] |
Godfrey D I, Kennedy J, Suda T, Zlotnik A (1993). A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol, 150(10): 4244–4252
Pubmed
|
[38] |
Gregori S, Giarratana N, Smiroldo S, Adorini L (2003). Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol, 171(8): 4040–4047
Pubmed
|
[39] |
Hagenbeek T J, Naspetti M, Malergue F, Garçon F, Nunès J A, Cleutjens K B, Trapman J, Krimpenfort P, Spits H (2004). The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med, 200(7): 883–894
CrossRef
Pubmed
Google scholar
|
[40] |
Hanada M, Feng J, Hemmings B A (2004). Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta, 1697(1-2): 3–16
Pubmed
|
[41] |
Harrington L S, Findlay G M, Lamb R F (2005). Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci, 30(1): 35–42
CrossRef
Pubmed
Google scholar
|
[42] |
Haxhinasto S, Mathis D, Benoist C (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med, 205(3): 565–574
CrossRef
Pubmed
Google scholar
|
[43] |
Hill M M, Andjelkovic M, Brazil D P, Ferrari S, Fabbro D, Hemmings B A (2001). Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem, 276(28): 25643–25646
CrossRef
Pubmed
Google scholar
|
[44] |
Hinton H J, Alessi D R, Cantrell D A (2004). The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol, 5(5): 539–545
CrossRef
Pubmed
Google scholar
|
[45] |
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder P K, Pan B S, Kotani H (2010). MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther, 9(7): 1956–1967
CrossRef
Pubmed
Google scholar
|
[46] |
Hoffman K, Holmes F A, Fraschini G, Esparza L, Frye D, Raber M N, Newman R A, Hortobagyi G N (1996). Phase I-II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother Pharmacol, 37(3): 254–258
CrossRef
Pubmed
Google scholar
|
[47] |
Hori S (2010). Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol, 22(5): 575–582
CrossRef
Pubmed
Google scholar
|
[48] |
Hori S, Nomura T, Sakaguchi S (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609): 1057–1061
CrossRef
Pubmed
Google scholar
|
[49] |
Horwitz D A, Zheng S G, Gray J D (2008). Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol, 29(9): 429–435
CrossRef
Pubmed
Google scholar
|
[50] |
Huang J, Manning B D (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans, 37(1): 217–222
CrossRef
Pubmed
Google scholar
|
[51] |
Jefferies H B, Fumagalli S, Dennis P B, Reinhard C, Pearson R B, Thomas G (1997). Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J, 16(12): 3693–3704
CrossRef
Pubmed
Google scholar
|
[52] |
Jones P F, Jakubowicz T, Pitossi F J, Maurer F, Hemmings B A (1991). Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA, 88(10): 4171–4175
CrossRef
Pubmed
Google scholar
|
[53] |
Josefowicz S Z, Rudensky A (2009). Control of regulatory T cell lineage commitment and maintenance. Immunity, 30(5): 616–625
CrossRef
Pubmed
Google scholar
|
[54] |
Juntilla M M, Koretzky G A (2008). Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett, 116(2): 104–110
CrossRef
Pubmed
Google scholar
|
[55] |
Juntilla M M, Wofford J A, Birnbaum M J, Rathmell J C, Koretzky G A (2007). Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA, 104(29): 12105–12110
CrossRef
Pubmed
Google scholar
|
[56] |
Kandel E S, Hay N (1999). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res, 253(1): 210–229
CrossRef
Pubmed
Google scholar
|
[57] |
Kane L P, Andres P G, Howland K C, Abbas A K, Weiss A (2001). Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol, 2(1): 37–44
CrossRef
Pubmed
Google scholar
|
[58] |
Kane L P, Shapiro V S, Stokoe D, Weiss A (1999). Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol, 9(11): 601–604
CrossRef
Pubmed
Google scholar
|
[59] |
Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, Ohta T, Ichikawa H, Aburatani H, Tashiro F, Taya Y (2009). PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell, 136(3): 535–550
CrossRef
Pubmed
Google scholar
|
[60] |
Khattri R, Cox T, Yasayko S A, Ramsdell F (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 4(4): 337–342
CrossRef
Pubmed
Google scholar
|
[61] |
Khoshnan A, Tindell C, Laux I, Bae D, Bennett B, Nel A E (2000). The NF-kappa B cascade is important in Bcl-xL expression and for the anti-apoptotic effects of the CD28 receptor in primary human CD4+ lymphocytes. J Immunol, 165(4): 1743–1754
Pubmed
|
[62] |
King C G, Kobayashi T, Cejas P J, Kim T, Yoon K, Kim G K, Chiffoleau E, Hickman S P, Walsh P T, Turka L A, Choi Y (2006). TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med, 12(9): 1088–1092
CrossRef
Pubmed
Google scholar
|
[63] |
Kleijn M, Scheper G C, Voorma H O, Thomas A A (1998). Regulation of translation initiation factors by signal transduction. Eur J Biochem, 253(3): 531–544
CrossRef
Pubmed
Google scholar
|
[64] |
Kojima H, Kanno Y, Hase H, Kobata T (2005). CD4+CD25+ regulatory T cells attenuate the phosphatidylinositol 3-kinase/Akt pathway in antigen-primed immature CD8+ CTLs during functional maturation. J Immunol, 174(10): 5959–5967
Pubmed
|
[65] |
Komatsu N, Mariotti-Ferrandiz M E, Wang Y, Malissen B, Waldmann H, Hori S (2009). Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA, 106(6): 1903–1908
CrossRef
Pubmed
Google scholar
|
[66] |
Konishi H, Kuroda S, Tanaka M, Matsuzaki H, Ono Y, Kameyama K, Haga T, Kikkawa U (1995). Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun, 216(2): 526–534
CrossRef
Pubmed
Google scholar
|
[67] |
Lafont V, Astoul E, Laurence A, Liautard J, Cantrell D (2000). The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Lett, 486(1): 38–42
CrossRef
Pubmed
Google scholar
|
[68] |
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson M A, Boothby M (2010). Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity, 32(6): 743–753
CrossRef
Pubmed
Google scholar
|
[69] |
Levelt C N, Carsetti R, Eichmann K (1993a). Regulation of thymocyte development through CD3. II. Expression of T cell receptor beta CD3 epsilon and maturation to the CD4+8+ stage are highly correlated in individual thymocytes. J Exp Med, 178(6): 1867–1875
CrossRef
Pubmed
Google scholar
|
[70] |
Levelt C N, Ehrfeld A, Eichmann K (1993b). Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3 epsilon determines clonal deletion or induction of developmental program. J Exp Med, 177(3): 707–716
CrossRef
Pubmed
Google scholar
|
[71] |
Liao Y, Hung M C (2004). A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells. Cancer Res, 64(17): 5938–5942
CrossRef
Pubmed
Google scholar
|
[72] |
Livolsi A, Busuttil V, Imbert V, Abraham R T, Peyron J F (2001). Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem, 268(5): 1508–1515
CrossRef
Pubmed
Google scholar
|
[73] |
Madrid L V, Wang C Y, Guttridge D C, Schottelius A J, Baldwin A S Jr, Mayo M W (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol, 20(5): 1626–1638
CrossRef
Pubmed
Google scholar
|
[74] |
Maira S M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, García-Echeverría C (2008). Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther, 7(7): 1851–1863
CrossRef
Pubmed
Google scholar
|
[75] |
Manning B D, Cantley L C (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7): 1261–1274
CrossRef
Pubmed
Google scholar
|
[76] |
Mao C, Tili E G, Dose M, Haks M C, Bear S E, Maroulakou I, Horie K, Gaitanaris G A, Fidanza V, Ludwig T, Wiest D L, Gounari F, Tsichlis P N (2007). Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J Immunol, 178(9): 5443–5453
Pubmed
|
[77] |
Markman B, Dienstmann R, Tabernero J (2010). Targeting the PI3K/Akt/mTOR pathway—beyond rapalogs. Oncotarget, 1(7): 530–543
Pubmed
|
[78] |
Marone R, Cmiljanovic V, Giese B, Wymann M P (2008). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta, 1784(1): 159–185
Pubmed
|
[79] |
Mendoza M C, Blenis J (2007). PHLPPing it off: phosphatases get in the Akt. Mol Cell, 25(6): 798–800
CrossRef
Pubmed
Google scholar
|
[80] |
Monk C R, Spachidou M, Rovis F, Leung E, Botto M, Lechler R I, Garden O A (2005). MRL/Mp CD4+,CD25- T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum, 52(4): 1180–1184
CrossRef
Pubmed
Google scholar
|
[81] |
Nakatani K, Sakaue H, Thompson D A, Weigel R J, Roth R A (1999). Identification of a human Akt3 (protein kinase B gamma) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun, 257(3): 906–910
CrossRef
Pubmed
Google scholar
|
[82] |
O’Reilly K E, Rojo F, She Q B, Solit D, Mills G B, Smith D, Lane H, Hofmann F, Hicklin D J, Ludwig D L, Baselga J, Rosen N (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 66(3): 1500–1508
CrossRef
Pubmed
Google scholar
|
[83] |
Obata T, Yaffe M B, Leparc G G, Piro E T, Maegawa H, Kashiwagi A, Kikkawa R, Cantley L C (2000). Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem, 275(46): 36108–36115
CrossRef
Pubmed
Google scholar
|
[84] |
Oldenhove G, Bouladoux N, Wohlfert E A, Hall J A, Chou D, Dos Santos L, O’Brien S, Blank R, Lamb E, Natarajan S, Kastenmayer R, Hunter C, Grigg M E, Belkaid Y (2009). Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity, 31(5): 772–786
CrossRef
Pubmed
Google scholar
|
[85] |
Ozes O N, Mayo L D, Gustin J A, Pfeffer S R, Pfeffer L M, Donner D B (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401(6748): 82–85
CrossRef
Pubmed
Google scholar
|
[86] |
Padmanabhan S, Mukhopadhyay A, Narasimhan S D, Tesz G, Czech M P, Tissenbaum H A (2009). A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell, 136(5): 939–951
CrossRef
Pubmed
Google scholar
|
[87] |
Pal S K, Reckamp K, Yu H, Figlin R A (2010). Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs, 19(11): 1355–1366
CrossRef
Pubmed
Google scholar
|
[88] |
Papiernik M, de Moraes M L, Pontoux C, Vasseur F, Pénit C (1998). Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol, 10(4): 371– 378
CrossRef
Pubmed
Google scholar
|
[89] |
Parry R V, Reif K, Smith G, Sansom D M, Hemmings B A, Ward S G (1997). Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur J Immunol, 27(10): 2495–2501
CrossRef
Pubmed
Google scholar
|
[90] |
Patra A K, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, Serfling E, Bommhardt U H (2006). PKB rescues calcineurin/NFAT-induced arrest of Rag expression and pre-T cell differentiation. J Immunol, 177(7): 4567–4576
Pubmed
|
[91] |
Patterson S J, Han J M, Garcia R, Assi K, Gao T, O’Neill A, Newton A C, Levings M K (2011). Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J Immunol, 186(10): 5533–5537
CrossRef
Pubmed
Google scholar
|
[92] |
Peifer C, Alessi D R (2008). Small-molecule inhibitors of PDK1. ChemMedChem, 3(12): 1810–1838
CrossRef
Pubmed
Google scholar
|
[93] |
Penit C, Vasseur F (1989). Cell proliferation and differentiation in the fetal and early postnatal mouse thymus. J Immunol, 142(10): 3369–3377
Pubmed
|
[94] |
Pillai V, Karandikar N J (2007). Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett, 114(1): 9–15
CrossRef
Pubmed
Google scholar
|
[95] |
Pim D, Massimi P, Dilworth S M, Banks L (2005). Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene, 24(53): 7830–7838
CrossRef
Pubmed
Google scholar
|
[96] |
Rao A, Luo C, Hogan P G (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol, 15(1): 707–747
CrossRef
Pubmed
Google scholar
|
[97] |
Redpath N T, Foulstone E J, Proud C G (1996). Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J, 15(9): 2291–2297
Pubmed
|
[98] |
Reid J M, Walden C A, Qin R, Ziegler K L, Haslam J L, Rajewski R A, Warndahl R, Fitting C L, Boring D, Szabo E, Crowell J, Perloff M, Jong L, Bauer B A, Mandrekar S J, Ames M M, Limburg P J, and the Cancer Prevention Network (2011). Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668. Cancer Prev Res (Phila), 4(3): 347–353
CrossRef
Pubmed
Google scholar
|
[99] |
Reif K, Burgering B M, Cantrell D A (1997). Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem, 272(22): 14426–14433
CrossRef
Pubmed
Google scholar
|
[100] |
Remy I, Montmarquette A, Michnick S W (2004). PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol, 6(4): 358–365
CrossRef
Pubmed
Google scholar
|
[101] |
Reneer M C, Estes D J, Velez-Ortega A C, Norris A, Mayer M, Marti F (2011). Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol, 41(11):3170–3175
|
[102] |
Rengarajan J, Tang B, Glimcher L H (2002). NFATc2 and NFATc3 regulate T(H)2 differentiation and modulate TCR-responsiveness of naïve T(H)cells. Nat Immunol, 3(1): 48–54
CrossRef
Pubmed
Google scholar
|
[103] |
Rocher G, Letourneux C, Lenormand P, Porteu F (2007). Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem, 282(8): 5468–5477
CrossRef
Pubmed
Google scholar
|
[104] |
Roget K, Malissen M, Malbec O, Malissen B, Daëron M (2008). Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol, 180(6): 3689–3698
Pubmed
|
[105] |
Romashkova J A, Makarov S S (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401(6748): 86–90
CrossRef
Pubmed
Google scholar
|
[106] |
Rondinone C M, Carvalho E, Wesslau C, Smith U P (1999). Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus. Diabetologia, 42(7): 819–825
CrossRef
Pubmed
Google scholar
|
[107] |
Rong S B, Hu Y, Enyedy I, Powis G, Meuillet E J, Wu X, Wang R, Wang S, Kozikowski A P (2001). Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J Med Chem, 44(6): 898–908
CrossRef
Pubmed
Google scholar
|
[108] |
Salomon B, Bluestone J A (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol, 19(1): 225–252
CrossRef
Pubmed
Google scholar
|
[109] |
Sarbassov D D, Guertin D A, Ali S M, Sabatini D M (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712): 1098–1101
CrossRef
Pubmed
Google scholar
|
[110] |
Sasaki T, Irie-Sasaki J, Jones R G, Oliveira-dos-Santos A J, Stanford W L, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T W, Ohashi P S, Suzuki A, Penninger J M (2000). Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science, 287(5455): 1040–1046
CrossRef
Pubmed
Google scholar
|
[111] |
Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight Z A, Cobb B S, Cantrell D, O’Connor E, Shokat K M, Fisher A G, Merkenschlager M (2008). T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA, 105(22): 7797–7802
CrossRef
Pubmed
Google scholar
|
[112] |
Shevach E M (2001). Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med, 193(11): F41–F46
CrossRef
Pubmed
Google scholar
|
[113] |
Shevach E M (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30(5): 636–645
CrossRef
Pubmed
Google scholar
|
[114] |
Shimoke K, Chiba H (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson’s disease. J Neurosci Res, 63(5): 402–409
CrossRef
Pubmed
Google scholar
|
[115] |
Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark G R (2002). Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem, 277(6): 3863–3869
CrossRef
Pubmed
Google scholar
|
[116] |
Song G, Ouyang G, Bao S (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 9(1): 59–71
CrossRef
Pubmed
Google scholar
|
[117] |
Song K, Wang H, Krebs T L, Danielpour D (2006). Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J, 25(1): 58–69
CrossRef
Pubmed
Google scholar
|
[118] |
Staal S P (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA, 84(14): 5034–5037
CrossRef
Pubmed
Google scholar
|
[119] |
Staal S P, Hartley J W, Rowe W P (1977). Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci USA, 74(7): 3065–3067
CrossRef
Pubmed
Google scholar
|
[120] |
Stahl M, Dijkers P F, Kops G J, Lens S M, Coffer P J, Burgering B M, Medema R H (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol, 168(10): 5024–5031
Pubmed
|
[121] |
Stambolic V, Suzuki A, de la Pompa J L, Brothers G M, Mirtsos C, Sasaki T, Ruland J, Penninger J M, Siderovski D P, Mak T W (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95(1): 29–39
CrossRef
Pubmed
Google scholar
|
[122] |
Starr T K, Jameson S C, Hogquist K A (2003). Positive and negative selection of T cells. Annu Rev Immunol, 21(1): 139–176
CrossRef
Pubmed
Google scholar
|
[123] |
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura A J, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M (2009). The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell, 17(6): 800–810
CrossRef
Pubmed
Google scholar
|
[124] |
Tang Q, Bluestone J A (2008). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol, 9(3): 239–244
CrossRef
Pubmed
Google scholar
|
[125] |
Thomas C C, Deak M, Alessi D R, van Aalten D M (2002). High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol, 12(14): 1256–1262
CrossRef
Pubmed
Google scholar
|
[126] |
Turinsky J, Damrau-Abney A (1998). Akt1 kinase and dynamics of insulin resistance in denervated muscles in vivo. Am J Physiol, 275(5 Pt 2): R1425–R1430
Pubmed
|
[127] |
Vignali D A, Collison L W, Workman C J (2008). How regulatory T cells work. Nat Rev Immunol, 8(7): 523–532
CrossRef
Pubmed
Google scholar
|
[128] |
Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 269(7): 5241–5248
Pubmed
|
[129] |
Vukmanovic-Stejic M, Zhang Y, Cook J E, Fletcher J M, McQuaid A, Masters J E, Rustin M H, Taams L S, Beverley P C, Macallan D C, Akbar A N (2006). Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest, 116(9): 2423–2433
CrossRef
Pubmed
Google scholar
|
[130] |
Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson T J, Djuretic I M, Sundrud M S, Unutmaz D (2011). Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J Exp Med, 208(9): 1875–1887
CrossRef
Pubmed
Google scholar
|
[131] |
Wehrens E J, Mijnheer G, Duurland C L, Klein M, Meerding J, van Loosdregt J, de Jager W, Sawitzki B, Coffer PJ, Vastert B, Prakken B J, van Wijk F (2011). Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood, 118(13):3538–3548
|
[132] |
Werlen G, Hausmann B, Naeher D, Palmer E (2003). Signaling life and death in the thymus: timing is everything. Science, 299(5614): 1859–1863
CrossRef
Pubmed
Google scholar
|
[133] |
Wiesinger D, Gubler H U, Haefliger W, Hauser D (1974). Antiinflammatory activity of the new mould metabolite 11-desacetoxy-wortmannin and of some of its derivatives. Experientia, 30(2): 135–136
CrossRef
Pubmed
Google scholar
|
[134] |
Workman C J, Szymczak-Workman A L, Collison L W, Pillai M R, Vignali D A (2009). The development and function of regulatory T cells. Cell Mol Life Sci, 66(16): 2603–2622
|
[135] |
Xu L, Kitani A, Fuss I, Strober W (2007). Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol, 178(11): 6725–6729
Pubmed
|
[136] |
Yang X O, Nurieva R, Martinez G J, Kang H S, Chung Y, Pappu B P, Shah B, Chang S H, Schluns K S, Watowich S S, Feng X H, Jetten A M, Dong C (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29(1): 44–56
CrossRef
Pubmed
Google scholar
|
[137] |
Yang Z Z, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings B A (2004). Physiological functions of protein kinase B/Akt. Biochem Soc Trans, 32(2): 350–354
CrossRef
Pubmed
Google scholar
|
[138] |
You S, Belghith M, Cobbold S, Alyanakian M A, Gouarin C, Barriot S, Garcia C, Waldmann H, Bach J F, Chatenoud L (2005). Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes, 54(5): 1415–1422
CrossRef
Pubmed
Google scholar
|
[139] |
Yung H W, Charnock-Jones D S, Burton G J (2011). Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE, 6(3): e17894
CrossRef
Pubmed
Google scholar
|
[140] |
Zhou L, Lopes J E, Chong M M, Ivanov I I, Min R, Victora G D, Shen Y, Du J, Rubtsov Y P, Rudensky A Y, Ziegler S F, Littman D R (2008). TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453(7192): 236–240
CrossRef
Pubmed
Google scholar
|
[141] |
Ziegler S F (2006). FOXP3: of mice and men. Annu Rev Immunol, 24(1): 209–226
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |