REVIEW

Alternative splicing switching in stem cell lineages

  • Iouri CHEPELEV 1 ,
  • Xin CHEN , 2
Expand
  • 1. Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
  • 2. Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA

Received date: 30 Nov 2011

Accepted date: 04 Jan 2012

Published date: 01 Feb 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The application of stem cells to regenerative medicine depends on a thorough understanding of the molecular mechanisms underlying their pluripotency. Many studies have identified key transcription factor-regulated transcriptional networks and chromatin landscapes of embryonic and a number of adult stem cells. In addition, recent publications have revealed another interesting molecular feature of stem cells— a distinct alternative splicing pattern. Thus, it is possible that both the identity and activity of stem cells are maintained by stem cell-specific mRNA isoforms, while switching to different isoforms ensures proper differentiation. In this review, we will discuss the generality of mRNA isoform switching and its interaction with other molecular mechanisms to regulate stem cell pluripotency, as well as the reprogramming process in which differentiated cells are induced to become pluripotent stem cell-like cells (iPSCs).

Cite this article

Iouri CHEPELEV , Xin CHEN . Alternative splicing switching in stem cell lineages[J]. Frontiers in Biology, 2013 , 8(1) : 50 -59 . DOI: 10.1007/s11515-012-1198-y

Acknowledgments

We apologize to people whose work cannot be discussed in this review due to space limitation. We thank Dr. Keji Zhao and Chen laboratory members for their critical comments on this review. The work in the Chen laboratory has been supported by Research Grant No. 05-FY09-88 from the March of Dimes Foundation, the R00HD055052 NIH Pathway to Independence Award, R21 HD065089 and R01HD065816 from NICHD, the 49th Mallinckrodt Scholar Award from the Edward Mallinckrodt, Jr. Foundation, the American Federation of Aging Research, the Lucile Packard Foundation, and the Johns Hopkins University start-up funding. And I.C. is supported by the Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, USA.
1
Allemand E, Batsché E, Muchardt C (2008). Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev, 18(2): 145-151

DOI PMID

2
Alló M, Buggiano V, Fededa J P, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela S A, Klinck R, Chabot B, Kornblihtt A R (2009). Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol, 16(7): 717-724

DOI PMID

3
Atlasi Y, Mowla S J, Ziaee S A, Gokhale P J, Andrews P W (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12): 3068-3074

DOI PMID

4
Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532-538

DOI PMID

5
Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53-59

DOI PMID

6
Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823-837

DOI PMID

7
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315-326

DOI PMID

8
Bland C S, Cooper T A (2007). Micromanaging alternative splicing during muscle differentiation. Dev Cell, 12(2): 171-172

DOI PMID

9
Bland C S, Wang E T, Vu A, David M P, Castle J C, Johnson J M, Burge C B, Cooper T A (2010). Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res, 38(21): 7651-7664

DOI PMID

10
Boutz P L, Chawla G, Stoilov P, Black D L (2007a). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 21(1): 71-84

DOI PMID

11
Boutz P L, Stoilov P, Li Q, Lin C H, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black D L (2007b). A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev, 21(13): 1636-1652

DOI PMID

12
Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G, Gifford D K, Melton D A, Jaenisch R, Young R A (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6): 947-956

DOI PMID

13
Boyer L A, Mathur D, Jaenisch R (2006a). Molecular control of pluripotency. Curr Opin Genet Dev, 16(5): 455-462

DOI PMID

14
Boyer L A, Plath K, Zeitlinger J, Brambrink T, Medeiros L A, Lee T I, Levine S S, Wernig M, Tajonar A, Ray M K, Bell G W, Otte A P, Vidal M, Gifford D K, Young R A, Jaenisch R (2006b). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441(7091): 349-353

DOI PMID

15
Chawla G, Lin C H, Han A, Shiue L, Ares M Jr, Black D L (2009). Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol, 29(1): 201-213

DOI PMID

16
Chen X (2008). Stem cells: what can we learn from flies? Fly (Austin), 2(1): 19-28

PMID

17
Cover T M, Thomas J A (1991). Elements of information theory, 1st Edition. New York: Wiley-Interscience

18
Das S,Jena S,Levasseur D N (2011). Alternative splicing produces nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 286(49):42690-42703

19
Eun S H, Gan Q, Chen X (2010). Epigenetic regulation of germ cell differentiation. Curr Opin Cell Biol, 22(6): 737-743

DOI PMID

20
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154-156

DOI PMID

21
Fuller M T, Spradling A C (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science, 316(5823): 402-404

DOI PMID

22
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132-146

DOI PMID

23
Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763-783

DOI PMID

24
Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason M J, Heidersbach A, Ramalho-Santos J, McManus M T, Plath K, Meshorer E, Ramalho-Santos M (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 460(7257): 863-868

PMID

25
Guan K, Nayernia K, Maier L S, Wagner S, Dressel R, Lee J H, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088): 1199-1203

DOI PMID

26
Guenther M G, Levine S S, Boyer L A, Jaenisch R, Young R A (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130(1): 77-88

DOI PMID

27
Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5-14

DOI PMID

28
Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7): 1001-1012

DOI PMID

29
Kim J, Chu J, Shen X, Wang J, Orkin S H (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6): 1049-1061

DOI PMID

30
Kunarso G, Wong K Y, Stanton L W, Lipovich L (2008). Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics, 9(1): 155

DOI PMID

31
Lareau L F, Inada M, Green R E, Wengrod J C, Brenner S E (2007). Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature, 446(7138): 926-929

DOI PMID

32
Lee J, Kim H K, Rho J Y, Han Y M, Kim J (2006a). The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem, 281(44): 33554-33565

DOI PMID

33
Lee T I, Jenner R G, Boyer L A, Guenther M G, Levine S S, Kumar R M, Chevalier B, Johnstone S E, Cole M F, Isono K, Koseki H, Fuchikami T, Abe K, Murray H L, Zucker J P, Yuan B, Bell G W, Herbolsheimer E, Hannett N M, Sun K, Odom D T, Otte A P, Volkert T L, Bartel D P, Melton D A, Gifford D K, Jaenisch R, Young R A (2006b). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125(2): 301-313

DOI PMID

34
Lemischka I R, Pritsker M (2006). Alternative splicing increases complexity of stem cell transcriptome. Cell Cycle, 5(4): 347-351

DOI PMID

35
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431-440

DOI PMID

36
Losick V P, Morris L X, Fox D T, Spradling A (2011). Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell, 21(1): 159-171

DOI PMID

37
Luco R F, Allo M, Schor I E, Kornblihtt A R, Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16-26

DOI PMID

38
Luco R F, Misteli T (2011). More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev, 21(4): 366-372

DOI PMID

39
Luco R F, Pan Q, Tominaga K, Blencowe B J, Pereira-Smith O M, Misteli T (2010). Regulation of alternative splicing by histone modifications. Science, 327(5968): 996-1000

DOI PMID

40
Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634-7638

DOI PMID

41
Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767-774

DOI PMID

42
Mikkelsen T S, Ku M, Jaffe D B, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T K, Koche R P, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander E S, Bernstein B E (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153): 553-560

DOI PMID

43
Molnár A, Georgopoulos K (1994). The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol, 14(12): 8292-8303

PMID

44
Morrison S J, Kimble J (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097): 1068-1074

DOI PMID

45
Morrison S J, Spradling A C (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4): 598-611

DOI PMID

46
Muñoz M J, Pérez Santangelo M S, Paronetto M P, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano J J, Bird G, Bentley D, Bertrand E, Kornblihtt A R (2009). DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell, 137(4): 708-720

DOI PMID

47
Nelles D A, Yeo G W (2010). Alternative splicing in stem cell self-renewal and diferentiation. Adv Exp Med Biol, 695: 92-104

DOI PMID

48
Ni J Z, Grate L, Donohue J P, Preston C, Nobida N, O’Brien G, Shiue L, Clark T A, Blume J E, Ares M Jr (2007). Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev, 21(6): 708-718

DOI PMID

49
Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175): 141-146

DOI PMID

50
Pritsker M, Doniger T T, Kramer L C, Westcot S E, Lemischka I R (2005). Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA, 102(40): 14290-14295

DOI PMID

51
Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 30(22): 5364-5380

DOI PMID

52
Richard S, Torabi N, Franco G V, Tremblay G A, Chen T, Vogel G, Morel M, Cléroux P, Forget-Richard A, Komarova S, Tremblay M L, Li W, Li A, Gao Y J, Henderson J E (2005). Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet, 1(6): e74

DOI PMID

53
Ritchie W, Granjeaud S, Puthier D, Gautheret D (2008). Entropy measures quantify global splicing disorders in cancer. PLOS Comput Biol, 4(3): e1000011

DOI PMID

54
Rossi D J, Jamieson C H, Weissman I L (2008). Stems cells and the pathways to aging and cancer. Cell, 132(4): 681-696

DOI PMID

55
Salomonis N, Nelson B, Vranizan K, Pico A R, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin B R (2009). Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLOS Comput Biol, 5(11): e1000553

DOI PMID

56
Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514-10519

DOI PMID

57
Schor I E, Rascovan N, Pelisch F, Alló M, Kornblihtt A R (2009). Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA, 106(11): 4325-4330

DOI PMID

58
Schwartz S, Ast G (2010). Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J, 29(10): 1629-1636

DOI PMID

59
Schwartz S, Meshorer E, Ast G (2009). Chromatin organization marks exon-intron structure. Nat Struct Mol Biol, 16(9): 990-995

DOI PMID

60
Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009). Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J, 276(22): 6658-6668

DOI PMID

61
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479(7371): 74-79

DOI PMID

62
Sims R J 3rd, Millhouse S, Chen C F, Lewis B A, Erdjument-Bromage H, Tempst P, Manley J L, Reinberg D (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell, 28(4): 665-676

DOI PMID

63
Smith A G (2001). Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 17(1): 435-462

DOI PMID

64
Stock J K, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher A G, Pombo A (2007). Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol, 9(12): 1428-1435

DOI PMID

65
Sultan M, Schulz M H, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo M L (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321(5891): 956-960

DOI PMID

66
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861-872

DOI PMID

67
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676

DOI PMID

68
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511-515

DOI PMID

69
Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701-718

DOI PMID

70
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470-476

DOI PMID

71
Wang Z, Burge C B (2008). Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA, 14(5): 802-813

DOI PMID

72
Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254-5259

DOI PMID

73
Wu Q, Chen X, Zhang J, Loh Y H, Low T Y, Zhang W, Zhang W, Sze S K, Lim B, Ng H H (2006). Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem, 281(34): 24090-24094

DOI PMID

74
Yamashita Y M, Yuan H, Cheng J, Hunt A J (2010). Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol, 2(1): a001313

DOI PMID

75
Yeo G W, Coufal N G, Liang T Y, Peng G E, Fu X D, Gage F H (2009). An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 16(2): 130-137

DOI PMID

76
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951-1967

DOI PMID

77
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917-1920

DOI PMID

78
Zhang C, Zhang Z, Castle J, Sun S, Johnson J, Krainer A R, Zhang M Q (2008). Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev, 22(18): 2550-2563

DOI PMID

79
Zhou Q, Chipperfield H, Melton D A, Wong W H (2007). A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci USA, 104(42): 16438-16443

DOI PMID

Outlines

/