Alternative splicing switching in stem cell lineages

Iouri CHEPELEV, Xin CHEN

PDF(310 KB)
PDF(310 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (1) : 50-59. DOI: 10.1007/s11515-012-1198-y
REVIEW
REVIEW

Alternative splicing switching in stem cell lineages

Author information +
History +

Abstract

The application of stem cells to regenerative medicine depends on a thorough understanding of the molecular mechanisms underlying their pluripotency. Many studies have identified key transcription factor-regulated transcriptional networks and chromatin landscapes of embryonic and a number of adult stem cells. In addition, recent publications have revealed another interesting molecular feature of stem cells— a distinct alternative splicing pattern. Thus, it is possible that both the identity and activity of stem cells are maintained by stem cell-specific mRNA isoforms, while switching to different isoforms ensures proper differentiation. In this review, we will discuss the generality of mRNA isoform switching and its interaction with other molecular mechanisms to regulate stem cell pluripotency, as well as the reprogramming process in which differentiated cells are induced to become pluripotent stem cell-like cells (iPSCs).

Keywords

alternative splicing / embryonic stem cells / adult stem cells / stem cell maintenance and differentiation / post-transcriptional regulation / epigenetic regulation

Cite this article

Download citation ▾
Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages. Front Biol, 2013, 8(1): 50‒59 https://doi.org/10.1007/s11515-012-1198-y

References

[1]
Allemand E, Batsché E, Muchardt C (2008). Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev, 18(2): 145-151
CrossRef Pubmed Google scholar
[2]
Alló M, Buggiano V, Fededa J P, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela S A, Klinck R, Chabot B, Kornblihtt A R (2009). Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol, 16(7): 717-724
CrossRef Pubmed Google scholar
[3]
Atlasi Y, Mowla S J, Ziaee S A, Gokhale P J, Andrews P W (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12): 3068-3074
CrossRef Pubmed Google scholar
[4]
Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532-538
CrossRef Pubmed Google scholar
[5]
Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53-59
CrossRef Pubmed Google scholar
[6]
Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823-837
CrossRef Pubmed Google scholar
[7]
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315-326
CrossRef Pubmed Google scholar
[8]
Bland C S, Cooper T A (2007). Micromanaging alternative splicing during muscle differentiation. Dev Cell, 12(2): 171-172
CrossRef Pubmed Google scholar
[9]
Bland C S, Wang E T, Vu A, David M P, Castle J C, Johnson J M, Burge C B, Cooper T A (2010). Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res, 38(21): 7651-7664
CrossRef Pubmed Google scholar
[10]
Boutz P L, Chawla G, Stoilov P, Black D L (2007a). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 21(1): 71-84
CrossRef Pubmed Google scholar
[11]
Boutz P L, Stoilov P, Li Q, Lin C H, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black D L (2007b). A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev, 21(13): 1636-1652
CrossRef Pubmed Google scholar
[12]
Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G, Gifford D K, Melton D A, Jaenisch R, Young R A (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6): 947-956
CrossRef Pubmed Google scholar
[13]
Boyer L A, Mathur D, Jaenisch R (2006a). Molecular control of pluripotency. Curr Opin Genet Dev, 16(5): 455-462
CrossRef Pubmed Google scholar
[14]
Boyer L A, Plath K, Zeitlinger J, Brambrink T, Medeiros L A, Lee T I, Levine S S, Wernig M, Tajonar A, Ray M K, Bell G W, Otte A P, Vidal M, Gifford D K, Young R A, Jaenisch R (2006b). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441(7091): 349-353
CrossRef Pubmed Google scholar
[15]
Chawla G, Lin C H, Han A, Shiue L, Ares M Jr, Black D L (2009). Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol, 29(1): 201-213
CrossRef Pubmed Google scholar
[16]
Chen X (2008). Stem cells: what can we learn from flies? Fly (Austin), 2(1): 19-28
Pubmed
[17]
Cover T M, Thomas J A (1991). Elements of information theory, 1st Edition. New York: Wiley-Interscience
[18]
Das S,Jena S,Levasseur D N (2011). Alternative splicing produces nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 286(49):42690-42703
[19]
Eun S H, Gan Q, Chen X (2010). Epigenetic regulation of germ cell differentiation. Curr Opin Cell Biol, 22(6): 737-743
CrossRef Pubmed Google scholar
[20]
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154-156
CrossRef Pubmed Google scholar
[21]
Fuller M T, Spradling A C (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science, 316(5823): 402-404
CrossRef Pubmed Google scholar
[22]
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132-146
CrossRef Pubmed Google scholar
[23]
Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763-783
CrossRef Pubmed Google scholar
[24]
Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason M J, Heidersbach A, Ramalho-Santos J, McManus M T, Plath K, Meshorer E, Ramalho-Santos M (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 460(7257): 863-868
Pubmed
[25]
Guan K, Nayernia K, Maier L S, Wagner S, Dressel R, Lee J H, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088): 1199-1203
CrossRef Pubmed Google scholar
[26]
Guenther M G, Levine S S, Boyer L A, Jaenisch R, Young R A (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130(1): 77-88
CrossRef Pubmed Google scholar
[27]
Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5-14
CrossRef Pubmed Google scholar
[28]
Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7): 1001-1012
CrossRef Pubmed Google scholar
[29]
Kim J, Chu J, Shen X, Wang J, Orkin S H (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6): 1049-1061
CrossRef Pubmed Google scholar
[30]
Kunarso G, Wong K Y, Stanton L W, Lipovich L (2008). Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics, 9(1): 155
CrossRef Pubmed Google scholar
[31]
Lareau L F, Inada M, Green R E, Wengrod J C, Brenner S E (2007). Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature, 446(7138): 926-929
CrossRef Pubmed Google scholar
[32]
Lee J, Kim H K, Rho J Y, Han Y M, Kim J (2006a). The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem, 281(44): 33554-33565
CrossRef Pubmed Google scholar
[33]
Lee T I, Jenner R G, Boyer L A, Guenther M G, Levine S S, Kumar R M, Chevalier B, Johnstone S E, Cole M F, Isono K, Koseki H, Fuchikami T, Abe K, Murray H L, Zucker J P, Yuan B, Bell G W, Herbolsheimer E, Hannett N M, Sun K, Odom D T, Otte A P, Volkert T L, Bartel D P, Melton D A, Gifford D K, Jaenisch R, Young R A (2006b). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125(2): 301-313
CrossRef Pubmed Google scholar
[34]
Lemischka I R, Pritsker M (2006). Alternative splicing increases complexity of stem cell transcriptome. Cell Cycle, 5(4): 347-351
CrossRef Pubmed Google scholar
[35]
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431-440
CrossRef Pubmed Google scholar
[36]
Losick V P, Morris L X, Fox D T, Spradling A (2011). Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell, 21(1): 159-171
CrossRef Pubmed Google scholar
[37]
Luco R F, Allo M, Schor I E, Kornblihtt A R, Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16-26
CrossRef Pubmed Google scholar
[38]
Luco R F, Misteli T (2011). More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev, 21(4): 366-372
CrossRef Pubmed Google scholar
[39]
Luco R F, Pan Q, Tominaga K, Blencowe B J, Pereira-Smith O M, Misteli T (2010). Regulation of alternative splicing by histone modifications. Science, 327(5968): 996-1000
CrossRef Pubmed Google scholar
[40]
Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634-7638
CrossRef Pubmed Google scholar
[41]
Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767-774
CrossRef Pubmed Google scholar
[42]
Mikkelsen T S, Ku M, Jaffe D B, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T K, Koche R P, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander E S, Bernstein B E (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153): 553-560
CrossRef Pubmed Google scholar
[43]
Molnár A, Georgopoulos K (1994). The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol, 14(12): 8292-8303
Pubmed
[44]
Morrison S J, Kimble J (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097): 1068-1074
CrossRef Pubmed Google scholar
[45]
Morrison S J, Spradling A C (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4): 598-611
CrossRef Pubmed Google scholar
[46]
Muñoz M J, Pérez Santangelo M S, Paronetto M P, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano J J, Bird G, Bentley D, Bertrand E, Kornblihtt A R (2009). DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell, 137(4): 708-720
CrossRef Pubmed Google scholar
[47]
Nelles D A, Yeo G W (2010). Alternative splicing in stem cell self-renewal and diferentiation. Adv Exp Med Biol, 695: 92-104
CrossRef Pubmed Google scholar
[48]
Ni J Z, Grate L, Donohue J P, Preston C, Nobida N, O’Brien G, Shiue L, Clark T A, Blume J E, Ares M Jr (2007). Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev, 21(6): 708-718
CrossRef Pubmed Google scholar
[49]
Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175): 141-146
CrossRef Pubmed Google scholar
[50]
Pritsker M, Doniger T T, Kramer L C, Westcot S E, Lemischka I R (2005). Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA, 102(40): 14290-14295
CrossRef Pubmed Google scholar
[51]
Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 30(22): 5364-5380
CrossRef Pubmed Google scholar
[52]
Richard S, Torabi N, Franco G V, Tremblay G A, Chen T, Vogel G, Morel M, Cléroux P, Forget-Richard A, Komarova S, Tremblay M L, Li W, Li A, Gao Y J, Henderson J E (2005). Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet, 1(6): e74
CrossRef Pubmed Google scholar
[53]
Ritchie W, Granjeaud S, Puthier D, Gautheret D (2008). Entropy measures quantify global splicing disorders in cancer. PLOS Comput Biol, 4(3): e1000011
CrossRef Pubmed Google scholar
[54]
Rossi D J, Jamieson C H, Weissman I L (2008). Stems cells and the pathways to aging and cancer. Cell, 132(4): 681-696
CrossRef Pubmed Google scholar
[55]
Salomonis N, Nelson B, Vranizan K, Pico A R, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin B R (2009). Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLOS Comput Biol, 5(11): e1000553
CrossRef Pubmed Google scholar
[56]
Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514-10519
CrossRef Pubmed Google scholar
[57]
Schor I E, Rascovan N, Pelisch F, Alló M, Kornblihtt A R (2009). Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA, 106(11): 4325-4330
CrossRef Pubmed Google scholar
[58]
Schwartz S, Ast G (2010). Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J, 29(10): 1629-1636
CrossRef Pubmed Google scholar
[59]
Schwartz S, Meshorer E, Ast G (2009). Chromatin organization marks exon-intron structure. Nat Struct Mol Biol, 16(9): 990-995
CrossRef Pubmed Google scholar
[60]
Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009). Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J, 276(22): 6658-6668
CrossRef Pubmed Google scholar
[61]
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479(7371): 74-79
CrossRef Pubmed Google scholar
[62]
Sims R J 3rd, Millhouse S, Chen C F, Lewis B A, Erdjument-Bromage H, Tempst P, Manley J L, Reinberg D (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell, 28(4): 665-676
CrossRef Pubmed Google scholar
[63]
Smith A G (2001). Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 17(1): 435-462
CrossRef Pubmed Google scholar
[64]
Stock J K, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher A G, Pombo A (2007). Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol, 9(12): 1428-1435
CrossRef Pubmed Google scholar
[65]
Sultan M, Schulz M H, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo M L (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321(5891): 956-960
CrossRef Pubmed Google scholar
[66]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861-872
CrossRef Pubmed Google scholar
[67]
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676
CrossRef Pubmed Google scholar
[68]
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511-515
CrossRef Pubmed Google scholar
[69]
Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701-718
CrossRef Pubmed Google scholar
[70]
Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470-476
CrossRef Pubmed Google scholar
[71]
Wang Z, Burge C B (2008). Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA, 14(5): 802-813
CrossRef Pubmed Google scholar
[72]
Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254-5259
CrossRef Pubmed Google scholar
[73]
Wu Q, Chen X, Zhang J, Loh Y H, Low T Y, Zhang W, Zhang W, Sze S K, Lim B, Ng H H (2006). Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem, 281(34): 24090-24094
CrossRef Pubmed Google scholar
[74]
Yamashita Y M, Yuan H, Cheng J, Hunt A J (2010). Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol, 2(1): a001313
CrossRef Pubmed Google scholar
[75]
Yeo G W, Coufal N G, Liang T Y, Peng G E, Fu X D, Gage F H (2009). An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 16(2): 130-137
CrossRef Pubmed Google scholar
[76]
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951-1967
CrossRef Pubmed Google scholar
[77]
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917-1920
CrossRef Pubmed Google scholar
[78]
Zhang C, Zhang Z, Castle J, Sun S, Johnson J, Krainer A R, Zhang M Q (2008). Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev, 22(18): 2550-2563
CrossRef Pubmed Google scholar
[79]
Zhou Q, Chipperfield H, Melton D A, Wong W H (2007). A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci USA, 104(42): 16438-16443
CrossRef Pubmed Google scholar

Acknowledgments

We apologize to people whose work cannot be discussed in this review due to space limitation. We thank Dr. Keji Zhao and Chen laboratory members for their critical comments on this review. The work in the Chen laboratory has been supported by Research Grant No. 05-FY09-88 from the March of Dimes Foundation, the R00HD055052 NIH Pathway to Independence Award, R21 HD065089 and R01HD065816 from NICHD, the 49th Mallinckrodt Scholar Award from the Edward Mallinckrodt, Jr. Foundation, the American Federation of Aging Research, the Lucile Packard Foundation, and the Johns Hopkins University start-up funding. And I.C. is supported by the Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, USA.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(310 KB)

Accesses

Citations

Detail

Sections
Recommended

/