Mass spectrometry-based phosphoproteomics in cancer research
Received date: 04 Sep 2012
Accepted date: 16 Oct 2012
Published date: 01 Dec 2012
Copyright
Phosphorylation is one of the most common post translational modifications (PTM), participating in a large number of processes to regulate cellular functions. Phosphorylation is also one of the key factors in the origin and development of cancer. The rapid development of mass spectrometric-based phosphoproteomic technologies has made it possible for high-throughput identification and quantification of phosphorylation events. In this review, we provide a general introduction and summary of the achievements made in mass spectrometry based phosphoproteomic research, including the approaches for phosphopeptide identification and quantification, as well as instrumentation and data interpretation methods. We also review some discoveries in cancer research made possible by phosphoproteomic analysis technologies.
Xiao-Shan YUE , Amanda B. HUMMON . Mass spectrometry-based phosphoproteomics in cancer research[J]. Frontiers in Biology, 2012 , 7(6) : 566 -586 . DOI: 10.1007/s11515-012-2022-4
1 |
Ali N A, Molloy M P (2011). Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Proteomics, 11(16): 3390–3401
|
2 |
Alpert A J (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A, 499: 177–196
|
3 |
Andersson L (1991). Recognition of phosphate groups by immobilized aluminium (III) ions. J Chromatogr A, 539(2): 327–334
|
4 |
Andersson L, Porath J (1986). Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem, 154(1): 250–254
|
5 |
Anguenot R, Yelle S, Nguyen-Quoc B (1999). Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys, 365(1): 163–169
|
6 |
Aryal U K, Olson D J, Ross A R (2008). Optimization of immobilized gallium (III) ion affinity chromatography for selective binding and recovery of phosphopeptides from protein digests. J Biomol Tech, 19(5): 296–310
|
7 |
Beausoleil S A, Jedrychowski M, Schwartz D, Elias J E, Villén J, Li J, Cohn M A, Cantley L C, Gygi S P (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA, 101(33): 12130–12135
|
8 |
Beausoleil S A, Villén J, Gerber S A, Rush J, Gygi S P (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol, 24(10): 1285–1292
|
9 |
Beli P, Lukashchuk N, Wagner S A, Weinert B T, Olsen J V, Baskcomb L, Mann M, Jackson S P, Choudhary C (2012). Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell, 46(2): 212–225
|
10 |
Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang S Y, Chen D J, Aebersold R, Shiloh Y (2010). ATM-dependent and-independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal, 3(151): rs3
|
11 |
Biarc J, Chalkley R J, Burlingame A L, Bradshaw R A (2011). Receptor tyrosine kinase signaling—a proteomic perspective. Adv Enzyme Regul, 51(1): 293–305
|
12 |
Bodenmiller B, Mueller L N, Mueller M, Domon B, Aebersold R (2007). Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods, 4(3): 231–237
|
13 |
Boersema P J, Mohammed S, Heck A J (2009). Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom, 44(6): 861–878
|
14 |
Bogdanov B, Smith R D (2005). Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev, 24(2): 168–200
|
15 |
Boja E S, Phillips D, French S A, Harris R A, Balaban R S (2009). Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res, 8(10): 4665–4675
|
16 |
Breuker K, Jin M, Han X, Jiang H, McLafferty F W (2008). Top-down identification and characterization of biomolecules by mass spectrometry. J Am Soc Mass Spectrom, 19(8): 1045–1053
|
17 |
Bridges S M, Magee G B, Wang N, Williams W P, Burgess S C, Nanduri B (2007). ProtQuant: a tool for the label-free quantification of MudPIT proteomics data. BMC Bioinformatics, 8(Suppl 7): S24
|
18 |
Buhrman D L, Price P I, Rudewicz P J (1996). Quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry: a study of ion suppression. J Am Soc Mass Spectrom, 7(11): 1099–1105
|
19 |
Cantin G T, Shock T R, Park S K, Madhani H D, Yates J R 3rd (2007). Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal Chem, 79(12): 4666–4673
|
20 |
Carr S A, Huddleston M J, Annan R S (1996). Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem, 239(2): 180–192
|
21 |
Chen J, Gallo K A (2012). MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res, 72(16): 4130–4140
|
22 |
Chen X, Smith L M, Bradbury E M (2000). Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal Chem, 72(6): 1134–1143
|
23 |
Chen Y Y, Dasari S, Ma Z Q, Vega-Montoto L J, Li M, Tabb D L (2012). Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines. Anal Bioanal Chem, 404(4): 1115–1125
|
24 |
Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z (2011). Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun (Camb), 47(20): 5732–5734
|
25 |
Christensen E, Evans K R, Ménard C, Pintilie M, Bristow R G (2008). Practical approaches to proteomic biomarkers within prostate cancer radiotherapy trials. Cancer Metastasis Rev, 27(3): 375–385
|
26 |
Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204
|
27 |
Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci, 25(12): 596–601
|
28 |
Cox J, Mann M (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 26(12): 1367–1372
|
29 |
Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen J V, Mann M (2009). A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc, 4(5): 698–705
|
30 |
Cox J, Neuhauser N, Michalski A, Scheltema R A, Olsen J V, Mann M (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res, 10(4): 1794–1805
|
31 |
Craig R, Beavis R C (2003). A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom, 17(20): 2310–2316
|
32 |
Craig R, Beavis R C (2004). TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20(9): 1466–1467
|
33 |
Cuccurullo M, Schlosser G, Cacace G, Malorni L, Pocsfalvi G (2007). Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. J Mass Spectrom, 42(8): 1069–1078
|
34 |
Cui W, Rohrs H W, Gross M L (2011). Top-down mass spectrometry: recent developments, applications and perspectives. Analyst (Lond), 136(19): 3854–3864
|
35 |
Dai J, Jin W H, Sheng Q H, Shieh C H, Wu J R, Zeng R (2007). Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry. J Proteome Res, 6(1): 250–262
|
36 |
Dayon L, Pasquarello C, Hoogland C, Sanchez J C, Scherl A (2010). Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteomics, 73(4): 769–777
|
37 |
Deeb S J, D’Souza R C, Cox J, Schmidt-Supprian Ms Mann M (2012). Super-STLAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics, 11(5): 77–89<DOI OutputMedium="All"/><PubMed OutputMedium="All"/>
|
38 |
Dephoure N, Gygi S P (2011). A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods, 54(4): 379–386
|
38 |
Dephoure N, Gygi S P (2011). A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods, 54(4): 379–386
|
39 |
Elias J E, Gygi S P (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods, 4(3): 207–214
|
40 |
Eng J K, Mccormack A L, Yates J R (1994). An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom, 5(11): 976–989
|
41 |
Evans C, Noirel J, Ow S Y, Salim M, Pereira-Medrano A G, Couto N, Pandhal J, Smith D, Pham T K, Karunakaran E, Zou X, Biggs C A, Wright P C (2012). An insight into iTRAQ: where do we stand now? Anal Bioanal Chem, 404(4): 1011–1027
|
42 |
Eyrich B, Sickmann A, Zahedi R P (2011). Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics, 11(4): 554–570
|
43 |
Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H (2007a). Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics, 7(3): 351–360
|
44 |
Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, Gong B (2007b). Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics, 6(9): 1656–1665
|
45 |
Ficarro S B, McCleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt D F, White F M (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol, 20(3): 301–305
|
46 |
Frese C K, Altelaar A F, Hennrich M L, Nolting D, Zeller M, Griep-Raming J, Heck A J, Mohammed S (2011). Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res, 10(5): 2377–2388
|
47 |
Furic L, Rong L, Larsson O, Koumakpayi I H, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury L A, Pandolfi P P, Saad F, Sonenberg N (2010). eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA, 107(32): 14134–14139
|
48 |
Garrett T J, Merves M, Yost R A (2011). Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry. Int J Mass Spectrom, 308(2–3): 299–306
|
49 |
Geiger T, Madden S F, Gallagher W M, Cox J, Mann M (2012). Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res, 72(9): 2428–2439
|
50 |
Gerber S A, Rush J, Stemman O, Kirschner M W, Gygi S P (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA, 100(12): 6940–6945
|
51 |
Good D M, Wirtala M, McAlister G C, Coon J J (2007). Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics, 6(11): 1942–1951
|
52 |
Goshe M B (2006). Characterizing phosphoproteins and phosphoproteomes using mass spectrometry. Brief Funct Genomics Proteomics, 4(4): 363–376
|
53 |
Grimsrud P A, Swaney D L, Wenger C D, Beauchene N A, Coon J J (2010). Phosphoproteomics for the masses. ACS Chem Biol, 5(1): 105–119
|
54 |
Guha U, Chaerkady R, Marimuthu A, Patterson A S, Kashyap M K, Harsha H C, Sato M, Bader J S, Lash A E, Minna J D, Pandey A, Varmus H E (2008). Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA, 105(37): 14112–14117
|
55 |
Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 17(10): 994–999
|
56 |
Han G, Ye M, Zhou H, Jiang X, Feng S, Jiang X, Tian R, Wan D, Zou H, Gu J (2008a). Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics, 8(7): 1346–1361
|
57 |
Han G, Ye M, Zou H (2008b). Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst (Lond), 133(9): 1128–1138
|
58 |
Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100(1): 57–70
|
59 |
Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674
|
60 |
Hao P, Zhang H, Sze S K (2011). Application of electrostatic repulsion hydrophilic interaction chromatography to the characterization of proteome, glycoproteome, and phosphoproteome using nano LC-MS/MS. Methods Mol Biol, 790: 305–318
|
61 |
Hennrich M L, Groenewold V, Kops G J, Heck A J, Mohammed S (2011). Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach. Anal Chem, 83(18): 7137–7143
|
62 |
Hoeijmakers J H (2009). DNA damage, aging, and cancer. N Engl J Med, 361(15): 1475–1485
|
63 |
Holmberg C I, Tran S E, Eriksson J E, Sistonen L (2002). Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci, 27(12): 619–627
|
64 |
Hornbeck P V, Kornhauser J M, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012). PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res, 40(D1 Database issue): D261–D270
|
65 |
Hsiao H H, Urlaub H (2010). Pseudo-neutral-loss scan for selective detection of phosphopeptides and N-glycopeptides using liquid chromatography coupled with a hybrid linear ion-trap/orbitrap mass spectrometer. Proteomics, 10(21): 3916–3921
|
66 |
Huang P H (2012). Phosphoproteomic studies of receptor tyrosine kinases: future perspectives. Mol Biosyst, 8(4): 1100–1107
|
67 |
Hung K E, Yu K H (2010). Proteomic approaches to cancer biomarkers. Gastroenterology, 138(1): 46–51, e1
|
68 |
Hunt D F, Yates J R 3rd, Shabanowitz J, Winston S, Hauer C R (1986). Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA, 83(17): 6233–6237
|
69 |
Huttlin E L, Jedrychowski M P, Elias J E, Goswami T, Rad R, Beausoleil S A, Villén J, Haas W, Sowa M E, Gygi S P (2010). A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 143(7): 1174–1189
|
70 |
Ikeguchi Y, Nakamura H (1997). Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Anal Sci, 13(3): 479–485
|
71 |
Imamura H, Wakabayashi M, Ishihama Y (2012). Analytical strategies for shotgun phosphoproteomics: Status and prospects. Semin Cell Dev Biol, Available online <day>5</day><month>June</month>2012, http://dx.doi.org/10.1016/j.semcdb.2012.05.007
|
72 |
Imanishi S Y, Kochin V, Eriksson J E (2007). Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics, 7(2): 174–176
|
73 |
Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A (2012). Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery. Mass Spectrom Rev: n/a doi: 10.1002/mas.21355
|
74 |
Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005). Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol, 23(5): 617–621
|
75 |
Jackson S P, Bartek J (2009). The DNA-damage response in human biology and disease. Nature, 461(7267): 1071–1078
|
76 |
Jadaliha M, Lee H J, Pakzad M, Fathi A, Jeong S K, Cho S Y, Baharvand H, Paik Y K, Salekdeh G H (2012). Quantitative proteomic analysis of human embryonic stem cell differentiation by 8-plex iTRAQ labelling. PLoS ONE, 7(6): e38532
|
77 |
Jedrychowski M P, Huttlin E L, Haas W, Sowa M E, Rad R, Gygi S P (2011). Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics, 10(12):M111.009910
|
78 |
Jiang X, Han G, Feng S, Jiang X, Ye M, Yao X, Zou H (2008). Automatic validation of phosphopeptide identifications by the MS2/MS3 target-decoy search strategy. J Proteome Res, 7(4): 1640–1649
|
79 |
Jiang X, Ye M, Cheng K, Zou H (2010). ArMone: a software suite specially designed for processing and analysis of phosphoproteome data. J Proteome Res, 9(5): 2743–2751
|
80 |
Jin W H, Dai J, Zhou H, Xia Q C, Zou H F, Zeng R (2004). Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry. Rapid Commun Mass Spectrom, 18(18): 2169–2176
|
81 |
Jones A M, Nuhse T S (2011). Phosphoproteomics using iTRAQ. Methods Mol Biol, 779: 287–302
|
82 |
Jorgensen T J (2009). Enhancing radiosensitivity: targeting the DNA repair pathways. Cancer Biol Ther, 8(8): 665–670
|
83 |
Jun H J, Johnson H, Bronson R T, de Feraudy S, White F, Charest A (2012). The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res, 72(15): 3764–3774
|
84 |
Kanshin E, Michnick S, Thibault P (2012). Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol, Available online <day>5</day><month>June</month>2012, http://dx.doi.org/10.1016/j.semcdb.2012.05.005
|
85 |
Kapp E, Schutz F (2007). Overview of tandem mass spectrometry (MS/MS) database search algorithms. Curr Protoc Protein Sci, Chapter 25: t22–t25
|
86 |
Kito K, Ito T (2008). Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics, 9(4): 263–274
|
87 |
Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stål O, Linn S, Landberg G (2009). Estrogen receptor-alpha phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst, 101(24): 1725–1729
|
88 |
Kong F, Nicole White C, Xiao X, Feng Y, Xu C, He D, Zhang Z, Yu Y (2006). Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer. Gynecol Oncol, 100(2): 247–253
|
89 |
Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics, 8(1): 81–94
|
90 |
Kozak K R, Amneus M W, Pusey S M, Su F, Luong M N, Luong S A, Reddy S T, Farias-Eisner R (2003). Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci USA, 100(21): 12343–12348
|
91 |
Kristensen D B, Imamura K, Miyamoto Y, Yoshizato K (2000). Mass spectrometric approaches for the characterization of proteins on a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer. Electrophoresis, 21(2): 430–439
|
92 |
Krüger M, Moser M, Ussar S, Thievessen I, Luber C A, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134(2): 353–364
|
93 |
Kuroda I, Shintani Y, Motokawa M, Abe S, Furuno M (2004). Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn. Anal Sci, 20(9): 1313–1319
|
94 |
Larger P J, Breda M, Fraier D, Hughes H, James C A (2005). Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis. J Pharm Biomed Anal, 39(1-2): 206–216
|
95 |
Larsen M R, Thingholm T E, Jensen O N, Roepstorff P, Jørgensen T J (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics, 4(7): 873–886
|
96 |
Lee D H, Goodarzi A A, Adelmant G O, Pan Y, Jeggo P A, Marto J A, Chowdhury D (2012). Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J, 31(10): 2403–2415
|
97 |
Lee J, Xu Y, Chen Y, Sprung R, Kim S C, Xie S, Zhao Y (2007). Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics, 6(4): 669–676
|
98 |
Lehmann W D, Krüger R, Salek M, Hung C W, Wolschin F, Weckwerth W (2007). Neutral loss-based phosphopeptide recognition: a collection of caveats. J Proteome Res, 6(7): 2866–2873
|
99 |
Lemeer S, Kunold E, Klaeger S, Raabe M, Towers M W, Claudes E, Arrey T N, Strupat K, Urlaub H, Kuster B (2012). Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score. Anal Bioanal Chem, 402(1): 249–260
|
100 |
Li Q R, Ning Z B, Tang J S, Nie S, Zeng R (2009). Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res, 8(11): 5375–5381
|
101 |
Li S, Dass C (1999). Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem, 270(1): 9–14
|
102 |
Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X (2008). Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J Proteome Res, 7(6): 2526–2538
|
103 |
Liang X, Fonnum G, Hajivandi M, Stene T, Kjus N H, Ragnhildstveit E, Amshey J W, Predki P, Pope R M (2007). Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation. J Am Soc Mass Spectrom, 18(11): 1932–1944
|
104 |
Lim K B, Kassel D B (2006). Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal Biochem, 354(2): 213–219
|
105 |
Lim Y P (2005). Mining the tumor phosphoproteome for cancer markers. Clin Cancer Res, 11(9): 3163–3169
|
106 |
Lin L, Hutzen B, Zuo M, Ball S, Deangelis S, Foust E, Pandit B, Ihnat M A, Shenoy S S, Kulp S, Li P K, Li C, Fuchs J, Lin J (2010). Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res, 70(6): 2445–2454
|
107 |
Liu H, Stupak J, Zheng J, Keller B O, Brix B J, Fliegel L, Li L (2004). Open tubular immobilized metal ion affinity chromatography combined with MALDI MS and MS/MS for identification of protein phosphorylation sites. Anal Chem, 76(14): 4223–4232
|
108 |
Lo T, Tsai C F, Shih Y R, Wang Y T, Lu S C, Sung T Y, Hsu W L, Chen Y J, Lee O K (2012). Phosphoproteomic analysis of human mesenchymal stromal cells during osteogenic differentiation. J Proteome Res, 11(2): 586–598
|
109 |
Lu M, Faull K F, Whitelegge J P, He J, Shen D, Saxton R E, Chang H R (2007). Proteomics and mass spectrometry for cancer biomarker discovery. Biomark Insights, 2: 347–360
|
110 |
Macek B, Mann M, Olsen J V (2009). Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol, 49(1): 199–221
|
111 |
Machida M, Kosako H, Shirakabe K, Kobayashi M, Ushiyama M, Inagawa J, Hirano J, Nakano T, Bando Y, Nishida E, Hattori S (2007). Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J, 274(6): 1576–1587
|
112 |
Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006a). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem, 78(7): 2113–2120
|
113 |
Makarov A, Denisov E, Lange O, Horning S (2006b). Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom, 17(7): 977–982
|
114 |
Mallet C R, Lu Z, Mazzeo J R (2004). A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Commun Mass Spectrom, 18(1): 49–58
|
115 |
Mant C T, Litowski J R, Hodges R S (1998). Hydrophilic interaction/cation-exchange chromatography for separation of amphipathic α-helical peptides. J Chromatogr A, 816(1): 65–78
|
116 |
Mayya V, Han D K (2009). Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev Proteomics, 6(6): 605–618
|
117 |
Mazanek M, Mituloviae G, Herzog F, Stingl C, Hutchins J R, Peters J M, Mechtler K (2007). Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat Protoc, 2(5): 1059–1069
|
118 |
Mazanek M, Roitinger E, Hudecz O, Hutchins J R, Hegemann B, Mitulović G, Taus T, Stingl C, Peters J M, Mechtler K (2010). A new acid mix enhances phosphopeptide enrichment on titanium- and zirconium dioxide for mapping of phosphorylation sites on protein complexes. J Chromatogr B Analyt Technol Biomed Life Sci, 878(5–6): 515–524
|
119 |
Mazsaroff I, Rounds M A, Regnier F E (1987). Facile preparation of a non-porous strong anion-exchange column for proteins. J Chromatogr A, 411: 452–455
|
120 |
McAlister G C, Berggren W T, Griep-Raming J, Horning S, Makarov A, Phanstiel D, Stafford G, Swaney D L, Syka J E, Zabrouskov V, Coon J J (2008). A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer. J Proteome Res, 7(8): 3127–3136
|
121 |
McClatchy D B, Liao L, Park S K, Venable J D, Yates J R (2007). Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res, 17(9): 1378–1388
|
122 |
McClatchy D B, Liao L, Park S K, Xu T, Lu B, Yates Iii J R (2011). Differential proteomic analysis of mammalian tissues using SILAM. PLoS ONE, 6(1): e16039
|
123 |
McNulty D E, Annan R S (2008). Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics, 7(5): 971–980
|
124 |
McNulty D E, Annan R S (2009). Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome. Methods Mol Biol, 527: 93–105
|
125 |
Mertins P, Udeshi N D, Clauser K R, Mani D R, Patel J, Ong S E, Jaffe J D, Carr S A (2012). iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol Cell Proteomics, 11(6):M111.014423
|
126 |
Metodiev M, Alldridge L (2008). Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl, 2(2): 181–194
|
127 |
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011). Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics, 10(9):M111.011015
|
128 |
Monetti M, Nagaraj N, Sharma K, Mann M (2011). Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat Methods, 8(8): 655–658
|
129 |
Morandell S, Stasyk T, Skvortsov S, Ascher S, Huber L A (2008). Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics, 8(21): 4383–4401
|
130 |
Mortensen P, Gouw J W, Olsen J V, Ong S E, Rigbolt K T, Bunkenborg J, Cox J, Foster L J, Heck A J, Blagoev B, Andersen J S, Mann M (2010). MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res, 9(1): 393–403
|
131 |
Moser K, White F M (2006). Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res, 5(1): 98–104
|
132 |
Negroni L, Claverol S, Rosenbaum J, Chevet E, Bonneu M, Schmitter J M (2012). Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 891-892: 109–112
|
133 |
Neilson K A, Ali N A, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter S C, Haynes P A (2011). Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics, 11(4): 535–553
|
134 |
Nelson C A, Szczech J R, Xu Q, Lawrence M J, Jin S, Ge Y (2009). Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun (Camb), (43): 6607–6609
|
135 |
Nita-Lazar A, Saito-Benz H, White F M (2008). Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics, 8(21): 4433–4443
|
136 |
Nuhse T, Yu K, Salomon A (2007). Isolation of phosphopeptides by immobilized metal ion affinity chromatography. Curr Protoc Mol Biol, Chapter 18:13–18
|
137 |
Nuhse T S, Stensballe A, Jensen O N, Peck S C (2003). Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics, 2(11): 1234–1243
|
138 |
Olsen J V, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3): 635–648
|
139 |
Olsen J V, Macek B, Lange O, Makarov A, Horning S, Mann M (2007). Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods, 4(9): 709–712
|
140 |
Olsen J V, Ong S E, Mann M (2004). Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics, 3(6): 608–614
|
141 |
Ong S E, Blagoev B, Kratchmarova I, Kristensen D B, Steen H, Pandey A, Mann M (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 1(5): 376–386
|
142 |
Ong S E, Foster L J, Mann M (2003a). Mass spectrometric-based approaches in quantitative proteomics. Methods, 29(2): 124–130
|
143 |
Ong S E, Kratchmarova I, Mann M (2003b). Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res, 2(2): 173–181
|
144 |
Ong S E, Mann M (2005). Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol, 1(5): 252–262
|
145 |
Ong S E, Mann M (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc, 1(6): 2650–2660
|
146 |
Ong S E, Mann M (2007). Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol Biol, 359: 37–52
|
147 |
Oyama M, Nagashima T, Suzuki T, Kozuka-Hata H, Yumoto N, Shiraishi Y, Ikeda K, Kuroki Y, Gotoh N, Ishida T, Inoue S, Kitano H, Okada-Hatakeyama M (2011). Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer. J Biol Chem, 286(1): 818–829
|
148 |
Palumbo A M, Smith S A, Kalcic C L, Dantus M, Stemmer P M, Reid G E (2011). Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrom Rev, 30(4): 600–625
|
149 |
Pan C, Olsen J V, Daub H, Mann M (2009). Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics, 8(12): 2796–2808
|
150 |
Peng J, Elias J E, Thoreen C C, Licklider L J, Gygi S P (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res, 2(1): 43–50
|
151 |
Perkins D N, Pappin D J, Creasy D M, Cottrell J S (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18): 3551–3567
|
152 |
Pichler P, Köcher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K (2010). Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem, 82(15): 6549–6558
|
153 |
Pimienta G, Chaerkady R, Pandey A (2009). SILAC for global phosphoproteomic analysis. Methods Mol Biol, 527: 107–116, x
|
154 |
Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 76(14): 3935–3943
|
155 |
Posewitz M C, Tempst P (1999). Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem, 71(14): 2883–2892
|
156 |
Pottiez G, Wiederin J, Fox H S, Ciborowski P (2012). Comparison of 4-plex to 8-plex iTRAQ quantitative measurements of proteins in human plasma samples. J Proteome Res, 11(7): 3774–3781
|
157 |
Powell S N, Kachnic L A (2008). Therapeutic exploitation of tumor cell defects in homologous recombination. Anticancer Agents Med Chem, 8(4): 448–460
|
158 |
Reid G E, McLuckey S A (2002). ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom, 37(7): 663–675
|
159 |
Rohrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D (2008). Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics, 8(17): 3548–3560
|
160 |
Rosenqvist H, Ye J, Jensen O N (2011). Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol, 753: 183–213
|
161 |
Ross P L, Huang Y N, Marchese J N, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin D J (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 3(12): 1154–1169
|
162 |
Ruan L, Li X H, Wan X X, Yi H, Li C, Li M Y, Zhang P F, Zeng G Q, Qu J Q, He Q Y, Li J H, Chen Y, Chen Z C, Xiao Z Q (2011). Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics. Proteome Sci, 9(1): 35
|
163 |
Rudrabhatla P, Grant P, Jaffe H, Strong M J, Pant H C (2010). Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. FASEB J, 24(11): 4396–4407
|
164 |
Ruttenberg B E, Pisitkun T, Knepper M A, Hoffert J D (2008). PhosphoScore: an open-source phosphorylation site assignment tool for MSn data. J Proteome Res, 7(7): 3054–3059
|
165 |
Savitski M M, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B (2011). Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics, 10(2):M110.03830
|
166 |
Schlosser A, Pipkorn R, Bossemeyer D, Lehmann W D (2001). Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem, 73(2): 170–176
|
167 |
Schlosser A, Vanselow J T, Kramer A (2005). Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. Anal Chem, 77(16): 5243–5250
|
168 |
Scholten A, Mohammed S, Low T Y, Zanivan S, van Veen T A, Delanghe B, Heck A J (2011). In-depth quantitative cardiac proteomics combining electron transfer dissociation and the metalloendopeptidase Lys-N with the SILAC mouse. Mol Cell Proteomics, 10(10):O111.008474
|
169 |
Schroeder M J, Shabanowitz J, Schwartz J C, Hunt D F, Coon J J (2004). A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem, 76(13): 3590–3598
|
170 |
Schwacke J H, Hill E G, Krug E L, Comte-Walters S, Schey K L (2009). iQuantitator: a tool for protein expression inference using iTRAQ. BMC Bioinformatics, 10(1): 342
|
171 |
Seeley E H, Riggs L D, Regnier F E (2005). Reduction of non-specific binding in Ga(III) immobilized metal affinity chromatography for phosphopeptides by using endoproteinase Glu-C as the digestive enzyme. J Chromatogr B Analyt Technol Biomed Life Sci, 817(1): 81–88
|
172 |
Semaan S M, Wang X, Stewart P A, Marshall A G, Sang Q X (2011). Differential phosphopeptide expression in a benign breast tissue, and triple-negative primary and metastatic breast cancer tissues from the same African-American woman by LC-LTQ/FT-ICR mass spectrometry. Biochem Biophys Res Commun, 412(1): 127–131
|
173 |
Sethuraman M, McComb M E, Huang H, Huang S, Heibeck T, Costello C E, Cohen R A (2004). Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res, 3(6): 1228–1233
|
174 |
Shilov I V, Seymour S L, Patel A A, Loboda A, Tang W H, Keating S P, Hunter C L, Nuwaysir L M, Schaeffer D A (2007). The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics, 6(9): 1638–1655
|
175 |
Simon E S, Young M, Chan A, Bao Z Q, Andrews P C (2008). Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Anal Biochem, 377(2): 234–242
|
177 |
Siuti N, Kelleher N L (2007). Decoding protein modifications using top-down mass spectrometry. Nat Methods, 4(10): 817–821
|
178 |
Steen H, Jebanathirajah J A, Springer M, Kirschner M W (2005). Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci USA, 102(11): 3948–3953
|
179 |
Stensballe A, Jensen O N (2004). Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Rapid Commun Mass Spectrom, 18(15): 1721–1730
|
180 |
Stupak J, Liu H, Wang Z, Brix B J, Fliegel L, Li L (2005). Nanoliter sample handling combined with microspot MALDI-MS for detection of gel-separated phosphoproteins. J Proteome Res, 4(2): 515–522
|
181 |
Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007). Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics, 6(6): 1103–1109
|
182 |
Sui S, Wang J, Lu Z, Cai Y, Zhang Y, Yu W, Qian X (2008). Phosphopeptide enrichment strategy based on strong cation exchange chromatography. Se Pu, 26(2): 195–199
|
183 |
Swaney D L, McAlister G C, Wirtala M, Schwartz J C, Syka J E, Coon J J (2007). Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem, 79(2): 477–485
|
184 |
Sweet S M, Creese A J, Cooper H J (2006). Strategy for the identification of sites of phosphorylation in proteins: neutral loss triggered electron capture dissociation. Anal Chem, 78(21): 7563–7569
|
185 |
Syka J E, Coon J J, Schroeder M J, Shabanowitz J, Hunt D F (2004a). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA, 101(26): 9528–9533
|
186 |
Syka J E, Marto J A, Bai D L, Horning S, Senko M W, Schwartz J C, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt D F (2004b). Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J Proteome Res, 3(3): 621–626
|
188 |
Taouatas N, Mohammed S, Heck A J (2011). Exploring new proteome space: combining Lys-N proteolytic digestion and strong cation exchange (SCX) separation in peptide-centric MS-driven proteomics. Methods Mol Biol, 753: 157–167
|
189 |
Tasaki S, Nagasaki M, Kozuka-Hata H, Semba K, Gotoh N, Hattori S, Inoue J, Yamamoto T, Miyano S, Sugano S, Oyama M (2010). Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling. PLoS ONE, 5(11): e13926
|
190 |
Taus T, Köcher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011). Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res, 10(12): 5354–5362
|
191 |
Thingholm T E, Jensen O N, Larsen M R (2009). Analytical strategies for phosphoproteomics. Proteomics, 9(6): 1451–1468
|
192 |
Thingholm T E, Jensen O N, Robinson P J, Larsen M R (2008). SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics, 7(4): 661–671
|
193 |
Thingholm T E, Jørgensen T J, Jensen O N, Larsen M R (2006). Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc, 1(4): 1929–1935
|
194 |
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C (2003). Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 75(8): 1895–1904
|
195 |
Villa S, De Fazio G, Canosi U (1989). Cyanogen bromide cleavage at methionine residues of polypeptides containing disulfide bonds. Anal Biochem, 177(1): 161–164
|
196 |
Villen J, Beausoleil S A, Gerber S A, Gygi S P (2007). Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA, 104(5): 1488–1493
|
197 |
Villen J, Gygi S P (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc, 3(10): 1630–1638
|
198 |
Wang G, Wu W W, Zeng W, Chou C L, Shen R F (2006). Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J Proteome Res, 5(5): 1214–1223
|
199 |
Wang S, Basson M D (2011). Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol, 300(3): C657–C670
|
200 |
Wang X, Stewart P A, Cao Q, Sang Q X, Chung L W, Emmett M R, Marshall A G (2011). Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res, 10(9): 3920–3928
|
201 |
Wang Y T, Tsai C F, Hong T C, Tsou C C, Lin P Y, Pan S H, Hong T M, Yang P C, Sung T Y, Hsu W L, Chen Y J (2010). An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res, 9(11): 5582–5597
|
202 |
Washburn M P, Wolters D, Yates J R 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 19(3): 242–247
|
203 |
Whitelegge J, Halgand F, Souda P, Zabrouskov V (2006). Top-down mass spectrometry of integral membrane proteins. Expert Rev Proteomics, 3(6): 585–596
|
204 |
Wolschin F, Weckwerth W (2005). Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods, 1(1): 9
|
205 |
Wolschin F, Wienkoop S, Weckwerth W (2005). Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics, 5(17): 4389–4397
|
206 |
Wu J, Shakey Q, Liu W, Schuller A, Follettie M T (2007). Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res, 6(12): 4684–4689
|
207 |
Wu J, Warren P, Shakey Q, Sousa E, Hill A, Ryan T E, He T (2010). Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides. Proteomics, 10(11): 2224–2234
|
208 |
Xiao G G, Recker R R, Deng H W (2008). Recent advances in proteomics and cancer biomarker discovery. Clin Med Oncol, 2: 63–72
|
209 |
Xie X, Feng S, Vuong H, Liu Y, Goodison S, Lubman D M (2010). A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis, 31(11): 1842–1852
|
210 |
Xu Y M, Zhu F, Cho Y Y, Carper A, Peng C, Zheng D, Yao K, Lau A T, Zykova T A, Kim H G, Bode A M, Dong Z (2010). Extracellular signal-regulated kinase 8-mediated c-Jun phosphorylation increases tumorigenesis of human colon cancer. Cancer Res, 70(8): 3218–3227
|
211 |
Yachie N, Saito R, Sugahara J, Tomita M, Ishihama Y (2009). In silico analysis of phosphoproteome data suggests a rich-get-richer process of phosphosite accumulation over evolution. Mol Cell Proteomics, 8(5): 1061–1071
|
212 |
Yan W, Lee H, Deutsch E W, Lazaro C A, Tang W, Chen E, Fausto N, Katze M G, Aebersold R (2004). A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry. Mol Cell Proteomics, 3(10): 1039–1041
|
213 |
Yang F, Wu S, Stenoien D L, Zhao R, Monroe M E, Gritsenko M A, Purvine S O, Polpitiya A D, Tolić N, Zhang Q, Norbeck A D, Orton D J, Moore R J, Tang K, Anderson G A, Pasa-Tolić L, Camp D G 2nd, Smith R D (2009). Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides. Anal Chem, 81(10): 4137–4143
|
214 |
Yang X J (2005). Multisite protein modification and intramolecular signaling. Oncogene, 24(10): 1653–1662
|
215 |
Yates J R, Cociorva D, Liao L, Zabrouskov V (2006). Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Anal Chem, 78(2): 493–500
|
216 |
Yates J R 3rd, Eng J K, McCormack A L, Schieltz D (1995). Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 67(8): 1426–1436
|
217 |
Yi E C, Li X J, Cooke K, Lee H, Raught B, Page A, Aneliunas V, Hieter P, Goodlett D R, Aebersold R (2005). Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics, 5(2): 380–387
|
218 |
Yu L R, Issaq H J, Veenstra T D (2007). Phosphoproteomics for the discovery of kinases as cancer biomarkers and drug targets. Proteomics Clin Appl, 1(9): 1042–1057
|
219 |
Yu P T, Babicky M, Jaquish D, French R, Marayuma K, Mose E, Niessen S, Hoover H, Shields D, Cheresh D, Cravatt B F, Lowy A M (2012). The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int J Cancer, 131(8): 1744–1754
|
220 |
Yu Y P, Luo J H (2011). Phosphorylation and interaction of myopodin by integrin-link kinase lead to suppression of cell growth and motility in prostate cancer cells. Oncogene, 30(49): 4855–4863
|
221 |
Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, Wu R, Ye M, Zou H (2009). Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Anal Chim Acta, 636(1): 34–41
|
222 |
Zanivan S, Krueger M, Mann M (2012). In vivo quantitative proteomics: the SILAC mouse. Methods Mol Biol, 757: 435–450
|
223 |
Zarei M, Sprenger A, Gretzmeier C, Dengjel J (2012). Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis. J Proteome Res, 11(8): 4269–4276
|
224 |
Zgoła-Grzeskowiak A, Grzeskowiak T (2011). The use of a triple quadrupole linear ion trap mass spectrometer with electrospray ionisation for fragmentation studies of selected antifungal drugs. Rapid Commun Mass Spectrom, 25(20): 3049–3055
|
225 |
Zhai B, Villén J, Beausoleil S A, Mintseris J, Gygi S P (2008). Phosphoproteome analysis of Drosophila melanogaster embryos. J Proteome Res, 7(4): 1675–1682
|
226 |
Zhang G, Fang B, Liu R Z, Lin H, Kinose F, Bai Y, Oguz U, Remily-Wood E R, Li J, Altiok S, Eschrich S, Koomen J, Haura E B (2011a). Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity. J Proteome Res, 10(1): 305–319
|
227 |
Zhang P X, Wang Y, Liu Y, Jiang G Y, Li Q C, Wang E H (2011b). p120-catenin isoform 3 regulates subcellular localization of Kaiso and promotes invasion in lung cancer cells via a phosphorylation-dependent mechanism. Int J Oncol, 38(6): 1625–1635
|
228 |
Zhao S, Venkatasubbarao K, Lazor J W, Sperry J, Jin C, Cao L, Freeman J W (2008). Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res, 68(11): 4221–4228
|
229 |
Zhong J, Kim M S, Chaerkady R, Wu X, Huang T C, Getnet D, Mitchell C J, Palapetta S M, Sharma J, O'Meally R N, Cole R N, Yoda A, Moritz A, Loriaux M M, Rush J, Weinstock D M, Tyner J W, Pandey A (2012). TSLP signaling network revealed by SILAC-based phosphoproteomics. Mol Cell Proteomics, 11(6):M112.017764
|
230 |
Zhou H, Tian R, Ye M, Xu S, Feng S, Pan C, Jiang X, Li X, Zou H (2007). Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis, 28(13): 2201–2215
|
231 |
Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008). Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res, 7(9): 3957–3967
|
232 |
Zhou W, Capello M, Fredolini C, Piemonti L, Liotta L A, Novelli F, Petricoin E F (2011). Proteomic analysis of pancreatic ductal adenocarcinoma cells reveals metabolic alterations. J Proteome Res, 10(4): 1944–1952
|
233 |
Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta L A, Novelli F, Petricoin E F (2012a). Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res, 11(2): 554–563
|
234 |
Zhou W, Liotta L A, Petricoin E F (2012b). The spectra count label-free quantitation in cancer proteomics. Cancer Genomics Proteomics, 9(3): 135–142
|
235 |
Zubarev R A (2004). Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol, 15(1):12–16
|
/
〈 | 〉 |