Mass spectrometry-based phosphoproteomics in cancer research
Xiao-Shan YUE, Amanda B. HUMMON
Mass spectrometry-based phosphoproteomics in cancer research
Phosphorylation is one of the most common post translational modifications (PTM), participating in a large number of processes to regulate cellular functions. Phosphorylation is also one of the key factors in the origin and development of cancer. The rapid development of mass spectrometric-based phosphoproteomic technologies has made it possible for high-throughput identification and quantification of phosphorylation events. In this review, we provide a general introduction and summary of the achievements made in mass spectrometry based phosphoproteomic research, including the approaches for phosphopeptide identification and quantification, as well as instrumentation and data interpretation methods. We also review some discoveries in cancer research made possible by phosphoproteomic analysis technologies.
phosphoproteomics / mass spectrometry / cancer research / phosphopeptide enrichment / quantitative phosphoproteomics / data interpretation
[1] |
Ali N A, Molloy M P (2011). Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Proteomics, 11(16): 3390–3401
CrossRef
Pubmed
Google scholar
|
[2] |
Alpert A J (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A, 499: 177–196
CrossRef
Pubmed
Google scholar
|
[3] |
Andersson L (1991). Recognition of phosphate groups by immobilized aluminium (III) ions. J Chromatogr A, 539(2): 327–334
CrossRef
Google scholar
|
[4] |
Andersson L, Porath J (1986). Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem, 154(1): 250–254
CrossRef
Pubmed
Google scholar
|
[5] |
Anguenot R, Yelle S, Nguyen-Quoc B (1999). Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys, 365(1): 163–169
CrossRef
Pubmed
Google scholar
|
[6] |
Aryal U K, Olson D J, Ross A R (2008). Optimization of immobilized gallium (III) ion affinity chromatography for selective binding and recovery of phosphopeptides from protein digests. J Biomol Tech, 19(5): 296–310
Pubmed
|
[7] |
Beausoleil S A, Jedrychowski M, Schwartz D, Elias J E, Villén J, Li J, Cohn M A, Cantley L C, Gygi S P (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA, 101(33): 12130–12135
CrossRef
Pubmed
Google scholar
|
[8] |
Beausoleil S A, Villén J, Gerber S A, Rush J, Gygi S P (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol, 24(10): 1285–1292
CrossRef
Pubmed
Google scholar
|
[9] |
Beli P, Lukashchuk N, Wagner S A, Weinert B T, Olsen J V, Baskcomb L, Mann M, Jackson S P, Choudhary C (2012). Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell, 46(2): 212–225
CrossRef
Pubmed
Google scholar
|
[10] |
Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang S Y, Chen D J, Aebersold R, Shiloh Y (2010). ATM-dependent and-independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal, 3(151): rs3
CrossRef
Pubmed
Google scholar
|
[11] |
Biarc J, Chalkley R J, Burlingame A L, Bradshaw R A (2011). Receptor tyrosine kinase signaling—a proteomic perspective. Adv Enzyme Regul, 51(1): 293–305
CrossRef
Pubmed
Google scholar
|
[12] |
Bodenmiller B, Mueller L N, Mueller M, Domon B, Aebersold R (2007). Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods, 4(3): 231–237
CrossRef
Pubmed
Google scholar
|
[13] |
Boersema P J, Mohammed S, Heck A J (2009). Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom, 44(6): 861–878
CrossRef
Pubmed
Google scholar
|
[14] |
Bogdanov B, Smith R D (2005). Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev, 24(2): 168–200
CrossRef
Pubmed
Google scholar
|
[15] |
Boja E S, Phillips D, French S A, Harris R A, Balaban R S (2009). Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res, 8(10): 4665–4675
CrossRef
Pubmed
Google scholar
|
[16] |
Breuker K, Jin M, Han X, Jiang H, McLafferty F W (2008). Top-down identification and characterization of biomolecules by mass spectrometry. J Am Soc Mass Spectrom, 19(8): 1045–1053
CrossRef
Pubmed
Google scholar
|
[17] |
Bridges S M, Magee G B, Wang N, Williams W P, Burgess S C, Nanduri B (2007). ProtQuant: a tool for the label-free quantification of MudPIT proteomics data. BMC Bioinformatics, 8(Suppl 7): S24
CrossRef
Pubmed
Google scholar
|
[18] |
Buhrman D L, Price P I, Rudewicz P J (1996). Quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry: a study of ion suppression. J Am Soc Mass Spectrom, 7(11): 1099–1105
CrossRef
Google scholar
|
[19] |
Cantin G T, Shock T R, Park S K, Madhani H D, Yates J R 3rd (2007). Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal Chem, 79(12): 4666–4673
CrossRef
Pubmed
Google scholar
|
[20] |
Carr S A, Huddleston M J, Annan R S (1996). Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem, 239(2): 180–192
CrossRef
Pubmed
Google scholar
|
[21] |
Chen J, Gallo K A (2012). MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res, 72(16): 4130–4140
CrossRef
Pubmed
Google scholar
|
[22] |
Chen X, Smith L M, Bradbury E M (2000). Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal Chem, 72(6): 1134–1143
CrossRef
Pubmed
Google scholar
|
[23] |
Chen Y Y, Dasari S, Ma Z Q, Vega-Montoto L J, Li M, Tabb D L (2012). Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines. Anal Bioanal Chem, 404(4): 1115–1125
CrossRef
Pubmed
Google scholar
|
[24] |
Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z (2011). Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun (Camb), 47(20): 5732–5734
CrossRef
Pubmed
Google scholar
|
[25] |
Christensen E, Evans K R, Ménard C, Pintilie M, Bristow R G (2008). Practical approaches to proteomic biomarkers within prostate cancer radiotherapy trials. Cancer Metastasis Rev, 27(3): 375–385
CrossRef
Pubmed
Google scholar
|
[26] |
Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204
CrossRef
Pubmed
Google scholar
|
[27] |
Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci, 25(12): 596–601
CrossRef
Pubmed
Google scholar
|
[28] |
Cox J, Mann M (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 26(12): 1367–1372
CrossRef
Pubmed
Google scholar
|
[29] |
Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen J V, Mann M (2009). A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc, 4(5): 698–705
CrossRef
Pubmed
Google scholar
|
[30] |
Cox J, Neuhauser N, Michalski A, Scheltema R A, Olsen J V, Mann M (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res, 10(4): 1794–1805
CrossRef
Pubmed
Google scholar
|
[31] |
Craig R, Beavis R C (2003). A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom, 17(20): 2310–2316
CrossRef
Pubmed
Google scholar
|
[32] |
Craig R, Beavis R C (2004). TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20(9): 1466–1467
CrossRef
Pubmed
Google scholar
|
[33] |
Cuccurullo M, Schlosser G, Cacace G, Malorni L, Pocsfalvi G (2007). Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. J Mass Spectrom, 42(8): 1069–1078
CrossRef
Pubmed
Google scholar
|
[34] |
Cui W, Rohrs H W, Gross M L (2011). Top-down mass spectrometry: recent developments, applications and perspectives. Analyst (Lond), 136(19): 3854–3864
CrossRef
Pubmed
Google scholar
|
[35] |
Dai J, Jin W H, Sheng Q H, Shieh C H, Wu J R, Zeng R (2007). Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry. J Proteome Res, 6(1): 250–262
CrossRef
Pubmed
Google scholar
|
[36] |
Dayon L, Pasquarello C, Hoogland C, Sanchez J C, Scherl A (2010). Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteomics, 73(4): 769–777
CrossRef
Pubmed
Google scholar
|
[37] |
Deeb S J, D’Souza R C, Cox J, Schmidt-Supprian Ms Mann M (2012). Super-STLAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics, 11(5): 77–89<DOI OutputMedium="All"/><PubMed OutputMedium="All"/>
|
[38] |
Dephoure N, Gygi S P (2011). A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods, 54(4): 379–386
CrossRef
Pubmed
Google scholar
|
[38] |
Dephoure N, Gygi S P (2011). A solid phase extraction-based platform for rapid phosphoproteomic analysis. Methods, 54(4): 379–386
CrossRef
Pubmed
Google scholar
|
[39] |
Elias J E, Gygi S P (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods, 4(3): 207–214
CrossRef
Pubmed
Google scholar
|
[40] |
Eng J K, Mccormack A L, Yates J R (1994). An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom, 5(11): 976–989
CrossRef
Google scholar
|
[41] |
Evans C, Noirel J, Ow S Y, Salim M, Pereira-Medrano A G, Couto N, Pandhal J, Smith D, Pham T K, Karunakaran E, Zou X, Biggs C A, Wright P C (2012). An insight into iTRAQ: where do we stand now? Anal Bioanal Chem, 404(4): 1011–1027
CrossRef
Pubmed
Google scholar
|
[42] |
Eyrich B, Sickmann A, Zahedi R P (2011). Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics, 11(4): 554–570
CrossRef
Pubmed
Google scholar
|
[43] |
Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H (2007a). Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics, 7(3): 351–360
CrossRef
Pubmed
Google scholar
|
[44] |
Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, Gong B (2007b). Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics, 6(9): 1656–1665
CrossRef
Pubmed
Google scholar
|
[45] |
Ficarro S B, McCleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt D F, White F M (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol, 20(3): 301–305
CrossRef
Pubmed
Google scholar
|
[46] |
Frese C K, Altelaar A F, Hennrich M L, Nolting D, Zeller M, Griep-Raming J, Heck A J, Mohammed S (2011). Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res, 10(5): 2377–2388
CrossRef
Pubmed
Google scholar
|
[47] |
Furic L, Rong L, Larsson O, Koumakpayi I H, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury L A, Pandolfi P P, Saad F, Sonenberg N (2010). eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA, 107(32): 14134–14139
CrossRef
Pubmed
Google scholar
|
[48] |
Garrett T J, Merves M, Yost R A (2011). Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry. Int J Mass Spectrom, 308(2–3): 299–306
CrossRef
Pubmed
Google scholar
|
[49] |
Geiger T, Madden S F, Gallagher W M, Cox J, Mann M (2012). Proteomic portrait of human breast cancer progression identifies novel prognostic markers. Cancer Res, 72(9): 2428–2439
CrossRef
Pubmed
Google scholar
|
[50] |
Gerber S A, Rush J, Stemman O, Kirschner M W, Gygi S P (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA, 100(12): 6940–6945
CrossRef
Pubmed
Google scholar
|
[51] |
Good D M, Wirtala M, McAlister G C, Coon J J (2007). Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics, 6(11): 1942–1951
CrossRef
Pubmed
Google scholar
|
[52] |
Goshe M B (2006). Characterizing phosphoproteins and phosphoproteomes using mass spectrometry. Brief Funct Genomics Proteomics, 4(4): 363–376
CrossRef
Pubmed
Google scholar
|
[53] |
Grimsrud P A, Swaney D L, Wenger C D, Beauchene N A, Coon J J (2010). Phosphoproteomics for the masses. ACS Chem Biol, 5(1): 105–119
CrossRef
Pubmed
Google scholar
|
[54] |
Guha U, Chaerkady R, Marimuthu A, Patterson A S, Kashyap M K, Harsha H C, Sato M, Bader J S, Lash A E, Minna J D, Pandey A, Varmus H E (2008). Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA, 105(37): 14112–14117
CrossRef
Pubmed
Google scholar
|
[55] |
Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 17(10): 994–999
CrossRef
Pubmed
Google scholar
|
[56] |
Han G, Ye M, Zhou H, Jiang X, Feng S, Jiang X, Tian R, Wan D, Zou H, Gu J (2008a). Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics, 8(7): 1346–1361
CrossRef
Pubmed
Google scholar
|
[57] |
Han G, Ye M, Zou H (2008b). Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst (Lond), 133(9): 1128–1138
CrossRef
Pubmed
Google scholar
|
[58] |
Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100(1): 57–70
CrossRef
Pubmed
Google scholar
|
[59] |
Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[60] |
Hao P, Zhang H, Sze S K (2011). Application of electrostatic repulsion hydrophilic interaction chromatography to the characterization of proteome, glycoproteome, and phosphoproteome using nano LC-MS/MS. Methods Mol Biol, 790: 305–318
CrossRef
Pubmed
Google scholar
|
[61] |
Hennrich M L, Groenewold V, Kops G J, Heck A J, Mohammed S (2011). Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach. Anal Chem, 83(18): 7137–7143
CrossRef
Pubmed
Google scholar
|
[62] |
Hoeijmakers J H (2009). DNA damage, aging, and cancer. N Engl J Med, 361(15): 1475–1485
CrossRef
Pubmed
Google scholar
|
[63] |
Holmberg C I, Tran S E, Eriksson J E, Sistonen L (2002). Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci, 27(12): 619–627
CrossRef
Pubmed
Google scholar
|
[64] |
Hornbeck P V, Kornhauser J M, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012). PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res, 40(D1 Database issue): D261–D270
CrossRef
Pubmed
Google scholar
|
[65] |
Hsiao H H, Urlaub H (2010). Pseudo-neutral-loss scan for selective detection of phosphopeptides and N-glycopeptides using liquid chromatography coupled with a hybrid linear ion-trap/orbitrap mass spectrometer. Proteomics, 10(21): 3916–3921
CrossRef
Pubmed
Google scholar
|
[66] |
Huang P H (2012). Phosphoproteomic studies of receptor tyrosine kinases: future perspectives. Mol Biosyst, 8(4): 1100–1107
CrossRef
Pubmed
Google scholar
|
[67] |
Hung K E, Yu K H (2010). Proteomic approaches to cancer biomarkers. Gastroenterology, 138(1): 46–51, e1
CrossRef
Pubmed
Google scholar
|
[68] |
Hunt D F, Yates J R 3rd, Shabanowitz J, Winston S, Hauer C R (1986). Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA, 83(17): 6233–6237
CrossRef
Pubmed
Google scholar
|
[69] |
Huttlin E L, Jedrychowski M P, Elias J E, Goswami T, Rad R, Beausoleil S A, Villén J, Haas W, Sowa M E, Gygi S P (2010). A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 143(7): 1174–1189
CrossRef
Pubmed
Google scholar
|
[70] |
Ikeguchi Y, Nakamura H (1997). Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Anal Sci, 13(3): 479–485
|
[71] |
Imamura H, Wakabayashi M, Ishihama Y (2012). Analytical strategies for shotgun phosphoproteomics: Status and prospects. Semin Cell Dev Biol, Available online <day>5</day><month>June</month>2012, http://dx.doi.org/10.1016/j.semcdb.2012.05.007
|
[72] |
Imanishi S Y, Kochin V, Eriksson J E (2007). Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics, 7(2): 174–176
CrossRef
Pubmed
Google scholar
|
[73] |
Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A (2012). Mass spectrometry-based proteomics: The road to lung cancer biomarker discovery. Mass Spectrom Rev: n/a doi: 10.1002/mas.21355
Pubmed
|
[74] |
Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005). Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol, 23(5): 617–621
CrossRef
Pubmed
Google scholar
|
[75] |
Jackson S P, Bartek J (2009). The DNA-damage response in human biology and disease. Nature, 461(7267): 1071–1078
CrossRef
Pubmed
Google scholar
|
[76] |
Jadaliha M, Lee H J, Pakzad M, Fathi A, Jeong S K, Cho S Y, Baharvand H, Paik Y K, Salekdeh G H (2012). Quantitative proteomic analysis of human embryonic stem cell differentiation by 8-plex iTRAQ labelling. PLoS ONE, 7(6): e38532
CrossRef
Pubmed
Google scholar
|
[77] |
Jedrychowski M P, Huttlin E L, Haas W, Sowa M E, Rad R, Gygi S P (2011). Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics, 10(12):M111.009910
|
[78] |
Jiang X, Han G, Feng S, Jiang X, Ye M, Yao X, Zou H (2008). Automatic validation of phosphopeptide identifications by the MS2/MS3 target-decoy search strategy. J Proteome Res, 7(4): 1640–1649
CrossRef
Pubmed
Google scholar
|
[79] |
Jiang X, Ye M, Cheng K, Zou H (2010). ArMone: a software suite specially designed for processing and analysis of phosphoproteome data. J Proteome Res, 9(5): 2743–2751
CrossRef
Pubmed
Google scholar
|
[80] |
Jin W H, Dai J, Zhou H, Xia Q C, Zou H F, Zeng R (2004). Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry. Rapid Commun Mass Spectrom, 18(18): 2169–2176
CrossRef
Pubmed
Google scholar
|
[81] |
Jones A M, Nuhse T S (2011). Phosphoproteomics using iTRAQ. Methods Mol Biol, 779: 287–302
CrossRef
Pubmed
Google scholar
|
[82] |
Jorgensen T J (2009). Enhancing radiosensitivity: targeting the DNA repair pathways. Cancer Biol Ther, 8(8): 665–670
CrossRef
Pubmed
Google scholar
|
[83] |
Jun H J, Johnson H, Bronson R T, de Feraudy S, White F, Charest A (2012). The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res, 72(15): 3764–3774
CrossRef
Pubmed
Google scholar
|
[84] |
Kanshin E, Michnick S, Thibault P (2012). Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol, Available online <day>5</day><month>June</month>2012, http://dx.doi.org/10.1016/j.semcdb.2012.05.005
|
[85] |
Kapp E, Schutz F (2007). Overview of tandem mass spectrometry (MS/MS) database search algorithms. Curr Protoc Protein Sci, Chapter 25: t22–t25
|
[86] |
Kito K, Ito T (2008). Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics, 9(4): 263–274
CrossRef
Pubmed
Google scholar
|
[87] |
Kok M, Holm-Wigerup C, Hauptmann M, Michalides R, Stål O, Linn S, Landberg G (2009). Estrogen receptor-alpha phosphorylation at serine-118 and tamoxifen response in breast cancer. J Natl Cancer Inst, 101(24): 1725–1729
CrossRef
Pubmed
Google scholar
|
[88] |
Kong F, Nicole White C, Xiao X, Feng Y, Xu C, He D, Zhang Z, Yu Y (2006). Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer. Gynecol Oncol, 100(2): 247–253
CrossRef
Pubmed
Google scholar
|
[89] |
Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics, 8(1): 81–94
CrossRef
Pubmed
Google scholar
|
[90] |
Kozak K R, Amneus M W, Pusey S M, Su F, Luong M N, Luong S A, Reddy S T, Farias-Eisner R (2003). Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci USA, 100(21): 12343–12348
CrossRef
Pubmed
Google scholar
|
[91] |
Kristensen D B, Imamura K, Miyamoto Y, Yoshizato K (2000). Mass spectrometric approaches for the characterization of proteins on a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer. Electrophoresis, 21(2): 430–439
CrossRef
Pubmed
Google scholar
|
[92] |
Krüger M, Moser M, Ussar S, Thievessen I, Luber C A, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134(2): 353–364
CrossRef
Pubmed
Google scholar
|
[93] |
Kuroda I, Shintani Y, Motokawa M, Abe S, Furuno M (2004). Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn. Anal Sci, 20(9): 1313–1319
CrossRef
Pubmed
Google scholar
|
[94] |
Larger P J, Breda M, Fraier D, Hughes H, James C A (2005). Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis. J Pharm Biomed Anal, 39(1-2): 206–216
CrossRef
Pubmed
Google scholar
|
[95] |
Larsen M R, Thingholm T E, Jensen O N, Roepstorff P, Jørgensen T J (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics, 4(7): 873–886
CrossRef
Pubmed
Google scholar
|
[96] |
Lee D H, Goodarzi A A, Adelmant G O, Pan Y, Jeggo P A, Marto J A, Chowdhury D (2012). Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J, 31(10): 2403–2415
CrossRef
Pubmed
Google scholar
|
[97] |
Lee J, Xu Y, Chen Y, Sprung R, Kim S C, Xie S, Zhao Y (2007). Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS. Mol Cell Proteomics, 6(4): 669–676
CrossRef
Pubmed
Google scholar
|
[98] |
Lehmann W D, Krüger R, Salek M, Hung C W, Wolschin F, Weckwerth W (2007). Neutral loss-based phosphopeptide recognition: a collection of caveats. J Proteome Res, 6(7): 2866–2873
CrossRef
Pubmed
Google scholar
|
[99] |
Lemeer S, Kunold E, Klaeger S, Raabe M, Towers M W, Claudes E, Arrey T N, Strupat K, Urlaub H, Kuster B (2012). Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score. Anal Bioanal Chem, 402(1): 249–260
CrossRef
Pubmed
Google scholar
|
[100] |
Li Q R, Ning Z B, Tang J S, Nie S, Zeng R (2009). Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res, 8(11): 5375–5381
CrossRef
Pubmed
Google scholar
|
[101] |
Li S, Dass C (1999). Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem, 270(1): 9–14
CrossRef
Pubmed
Google scholar
|
[102] |
Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X (2008). Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J Proteome Res, 7(6): 2526–2538
CrossRef
Pubmed
Google scholar
|
[103] |
Liang X, Fonnum G, Hajivandi M, Stene T, Kjus N H, Ragnhildstveit E, Amshey J W, Predki P, Pope R M (2007). Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation. J Am Soc Mass Spectrom, 18(11): 1932–1944
CrossRef
Pubmed
Google scholar
|
[104] |
Lim K B, Kassel D B (2006). Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal Biochem, 354(2): 213–219
CrossRef
Pubmed
Google scholar
|
[105] |
Lim Y P (2005). Mining the tumor phosphoproteome for cancer markers. Clin Cancer Res, 11(9): 3163–3169
CrossRef
Pubmed
Google scholar
|
[106] |
Lin L, Hutzen B, Zuo M, Ball S, Deangelis S, Foust E, Pandit B, Ihnat M A, Shenoy S S, Kulp S, Li P K, Li C, Fuchs J, Lin J (2010). Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res, 70(6): 2445–2454
CrossRef
Pubmed
Google scholar
|
[107] |
Liu H, Stupak J, Zheng J, Keller B O, Brix B J, Fliegel L, Li L (2004). Open tubular immobilized metal ion affinity chromatography combined with MALDI MS and MS/MS for identification of protein phosphorylation sites. Anal Chem, 76(14): 4223–4232
CrossRef
Pubmed
Google scholar
|
[108] |
Lo T, Tsai C F, Shih Y R, Wang Y T, Lu S C, Sung T Y, Hsu W L, Chen Y J, Lee O K (2012). Phosphoproteomic analysis of human mesenchymal stromal cells during osteogenic differentiation. J Proteome Res, 11(2): 586–598
CrossRef
Pubmed
Google scholar
|
[109] |
Lu M, Faull K F, Whitelegge J P, He J, Shen D, Saxton R E, Chang H R (2007). Proteomics and mass spectrometry for cancer biomarker discovery. Biomark Insights, 2: 347–360
Pubmed
|
[110] |
Macek B, Mann M, Olsen J V (2009). Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol, 49(1): 199–221
CrossRef
Pubmed
Google scholar
|
[111] |
Machida M, Kosako H, Shirakabe K, Kobayashi M, Ushiyama M, Inagawa J, Hirano J, Nakano T, Bando Y, Nishida E, Hattori S (2007). Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J, 274(6): 1576–1587
CrossRef
Pubmed
Google scholar
|
[112] |
Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006a). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem, 78(7): 2113–2120
CrossRef
Pubmed
Google scholar
|
[113] |
Makarov A, Denisov E, Lange O, Horning S (2006b). Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom, 17(7): 977–982
CrossRef
Pubmed
Google scholar
|
[114] |
Mallet C R, Lu Z, Mazzeo J R (2004). A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Commun Mass Spectrom, 18(1): 49–58
CrossRef
Pubmed
Google scholar
|
[115] |
Mant C T, Litowski J R, Hodges R S (1998). Hydrophilic interaction/cation-exchange chromatography for separation of amphipathic α-helical peptides. J Chromatogr A, 816(1): 65–78
CrossRef
Pubmed
Google scholar
|
[116] |
Mayya V, Han D K (2009). Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations. Expert Rev Proteomics, 6(6): 605–618
CrossRef
Pubmed
Google scholar
|
[117] |
Mazanek M, Mituloviae G, Herzog F, Stingl C, Hutchins J R, Peters J M, Mechtler K (2007). Titanium dioxide as a chemo-affinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat Protoc, 2(5): 1059–1069
CrossRef
Pubmed
Google scholar
|
[118] |
Mazanek M, Roitinger E, Hudecz O, Hutchins J R, Hegemann B, Mitulović G, Taus T, Stingl C, Peters J M, Mechtler K (2010). A new acid mix enhances phosphopeptide enrichment on titanium- and zirconium dioxide for mapping of phosphorylation sites on protein complexes. J Chromatogr B Analyt Technol Biomed Life Sci, 878(5–6): 515–524
CrossRef
Pubmed
Google scholar
|
[119] |
Mazsaroff I, Rounds M A, Regnier F E (1987). Facile preparation of a non-porous strong anion-exchange column for proteins. J Chromatogr A, 411: 452–455
CrossRef
Pubmed
Google scholar
|
[120] |
McAlister G C, Berggren W T, Griep-Raming J, Horning S, Makarov A, Phanstiel D, Stafford G, Swaney D L, Syka J E, Zabrouskov V, Coon J J (2008). A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer. J Proteome Res, 7(8): 3127–3136
CrossRef
Pubmed
Google scholar
|
[121] |
McClatchy D B, Liao L, Park S K, Venable J D, Yates J R (2007). Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res, 17(9): 1378–1388
CrossRef
Pubmed
Google scholar
|
[122] |
McClatchy D B, Liao L, Park S K, Xu T, Lu B, Yates Iii J R (2011). Differential proteomic analysis of mammalian tissues using SILAM. PLoS ONE, 6(1): e16039
CrossRef
Pubmed
Google scholar
|
[123] |
McNulty D E, Annan R S (2008). Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics, 7(5): 971–980
CrossRef
Pubmed
Google scholar
|
[124] |
McNulty D E, Annan R S (2009). Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome. Methods Mol Biol, 527: 93–105
CrossRef
Pubmed
Google scholar
|
[125] |
Mertins P, Udeshi N D, Clauser K R, Mani D R, Patel J, Ong S E, Jaffe J D, Carr S A (2012). iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol Cell Proteomics, 11(6):M111.014423
|
[126] |
Metodiev M, Alldridge L (2008). Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl, 2(2): 181–194
CrossRef
Pubmed
Google scholar
|
[127] |
Michalski A, Damoc E, Hauschild J P, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011). Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics, 10(9):M111.011015
|
[128] |
Monetti M, Nagaraj N, Sharma K, Mann M (2011). Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat Methods, 8(8): 655–658
CrossRef
Pubmed
Google scholar
|
[129] |
Morandell S, Stasyk T, Skvortsov S, Ascher S, Huber L A (2008). Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics, 8(21): 4383–4401
CrossRef
Pubmed
Google scholar
|
[130] |
Mortensen P, Gouw J W, Olsen J V, Ong S E, Rigbolt K T, Bunkenborg J, Cox J, Foster L J, Heck A J, Blagoev B, Andersen J S, Mann M (2010). MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res, 9(1): 393–403
CrossRef
Pubmed
Google scholar
|
[131] |
Moser K, White F M (2006). Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res, 5(1): 98–104
CrossRef
Pubmed
Google scholar
|
[132] |
Negroni L, Claverol S, Rosenbaum J, Chevet E, Bonneu M, Schmitter J M (2012). Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 891-892: 109–112
CrossRef
Pubmed
Google scholar
|
[133] |
Neilson K A, Ali N A, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter S C, Haynes P A (2011). Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics, 11(4): 535–553
CrossRef
Pubmed
Google scholar
|
[134] |
Nelson C A, Szczech J R, Xu Q, Lawrence M J, Jin S, Ge Y (2009). Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun (Camb), (43): 6607–6609
CrossRef
Pubmed
Google scholar
|
[135] |
Nita-Lazar A, Saito-Benz H, White F M (2008). Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics, 8(21): 4433–4443
CrossRef
Pubmed
Google scholar
|
[136] |
Nuhse T, Yu K, Salomon A (2007). Isolation of phosphopeptides by immobilized metal ion affinity chromatography. Curr Protoc Mol Biol, Chapter 18:13–18
|
[137] |
Nuhse T S, Stensballe A, Jensen O N, Peck S C (2003). Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics, 2(11): 1234–1243
CrossRef
Pubmed
Google scholar
|
[138] |
Olsen J V, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3): 635–648
CrossRef
Pubmed
Google scholar
|
[139] |
Olsen J V, Macek B, Lange O, Makarov A, Horning S, Mann M (2007). Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods, 4(9): 709–712
CrossRef
Pubmed
Google scholar
|
[140] |
Olsen J V, Ong S E, Mann M (2004). Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics, 3(6): 608–614
CrossRef
Pubmed
Google scholar
|
[141] |
Ong S E, Blagoev B, Kratchmarova I, Kristensen D B, Steen H, Pandey A, Mann M (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 1(5): 376–386
CrossRef
Pubmed
Google scholar
|
[142] |
Ong S E, Foster L J, Mann M (2003a). Mass spectrometric-based approaches in quantitative proteomics. Methods, 29(2): 124–130
CrossRef
Pubmed
Google scholar
|
[143] |
Ong S E, Kratchmarova I, Mann M (2003b). Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res, 2(2): 173–181
CrossRef
Pubmed
Google scholar
|
[144] |
Ong S E, Mann M (2005). Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol, 1(5): 252–262
CrossRef
Pubmed
Google scholar
|
[145] |
Ong S E, Mann M (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc, 1(6): 2650–2660
CrossRef
Pubmed
Google scholar
|
[146] |
Ong S E, Mann M (2007). Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol Biol, 359: 37–52
CrossRef
Pubmed
Google scholar
|
[147] |
Oyama M, Nagashima T, Suzuki T, Kozuka-Hata H, Yumoto N, Shiraishi Y, Ikeda K, Kuroki Y, Gotoh N, Ishida T, Inoue S, Kitano H, Okada-Hatakeyama M (2011). Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer. J Biol Chem, 286(1): 818–829
CrossRef
Pubmed
Google scholar
|
[148] |
Palumbo A M, Smith S A, Kalcic C L, Dantus M, Stemmer P M, Reid G E (2011). Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrom Rev, 30(4): 600–625
CrossRef
Pubmed
Google scholar
|
[149] |
Pan C, Olsen J V, Daub H, Mann M (2009). Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics, 8(12): 2796–2808
CrossRef
Pubmed
Google scholar
|
[150] |
Peng J, Elias J E, Thoreen C C, Licklider L J, Gygi S P (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res, 2(1): 43–50
CrossRef
Pubmed
Google scholar
|
[151] |
Perkins D N, Pappin D J, Creasy D M, Cottrell J S (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18): 3551–3567
CrossRef
Pubmed
Google scholar
|
[152] |
Pichler P, Köcher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K (2010). Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem, 82(15): 6549–6558
CrossRef
Pubmed
Google scholar
|
[153] |
Pimienta G, Chaerkady R, Pandey A (2009). SILAC for global phosphoproteomic analysis. Methods Mol Biol, 527: 107–116, x
CrossRef
Pubmed
Google scholar
|
[154] |
Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 76(14): 3935–3943
CrossRef
Pubmed
Google scholar
|
[155] |
Posewitz M C, Tempst P (1999). Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem, 71(14): 2883–2892
CrossRef
Pubmed
Google scholar
|
[156] |
Pottiez G, Wiederin J, Fox H S, Ciborowski P (2012). Comparison of 4-plex to 8-plex iTRAQ quantitative measurements of proteins in human plasma samples. J Proteome Res, 11(7): 3774–3781
CrossRef
Pubmed
Google scholar
|
[157] |
Powell S N, Kachnic L A (2008). Therapeutic exploitation of tumor cell defects in homologous recombination. Anticancer Agents Med Chem, 8(4): 448–460
Pubmed
|
[158] |
Reid G E, McLuckey S A (2002). ‘Top down’ protein characterization via tandem mass spectrometry. J Mass Spectrom, 37(7): 663–675
CrossRef
Pubmed
Google scholar
|
[159] |
Rohrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D (2008). Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics, 8(17): 3548–3560
CrossRef
Pubmed
Google scholar
|
[160] |
Rosenqvist H, Ye J, Jensen O N (2011). Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol, 753: 183–213
CrossRef
Pubmed
Google scholar
|
[161] |
Ross P L, Huang Y N, Marchese J N, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin D J (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 3(12): 1154–1169
CrossRef
Pubmed
Google scholar
|
[162] |
Ruan L, Li X H, Wan X X, Yi H, Li C, Li M Y, Zhang P F, Zeng G Q, Qu J Q, He Q Y, Li J H, Chen Y, Chen Z C, Xiao Z Q (2011). Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics. Proteome Sci, 9(1): 35
CrossRef
Pubmed
Google scholar
|
[163] |
Rudrabhatla P, Grant P, Jaffe H, Strong M J, Pant H C (2010). Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. FASEB J, 24(11): 4396–4407
CrossRef
Pubmed
Google scholar
|
[164] |
Ruttenberg B E, Pisitkun T, Knepper M A, Hoffert J D (2008). PhosphoScore: an open-source phosphorylation site assignment tool for MSn data. J Proteome Res, 7(7): 3054–3059
CrossRef
Pubmed
Google scholar
|
[165] |
Savitski M M, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B (2011). Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics, 10(2):M110.03830
|
[166] |
Schlosser A, Pipkorn R, Bossemeyer D, Lehmann W D (2001). Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem, 73(2): 170–176
CrossRef
Pubmed
Google scholar
|
[167] |
Schlosser A, Vanselow J T, Kramer A (2005). Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. Anal Chem, 77(16): 5243–5250
CrossRef
Pubmed
Google scholar
|
[168] |
Scholten A, Mohammed S, Low T Y, Zanivan S, van Veen T A, Delanghe B, Heck A J (2011). In-depth quantitative cardiac proteomics combining electron transfer dissociation and the metalloendopeptidase Lys-N with the SILAC mouse. Mol Cell Proteomics, 10(10):O111.008474
|
[169] |
Schroeder M J, Shabanowitz J, Schwartz J C, Hunt D F, Coon J J (2004). A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem, 76(13): 3590–3598
CrossRef
Pubmed
Google scholar
|
[170] |
Schwacke J H, Hill E G, Krug E L, Comte-Walters S, Schey K L (2009). iQuantitator: a tool for protein expression inference using iTRAQ. BMC Bioinformatics, 10(1): 342
CrossRef
Pubmed
Google scholar
|
[171] |
Seeley E H, Riggs L D, Regnier F E (2005). Reduction of non-specific binding in Ga(III) immobilized metal affinity chromatography for phosphopeptides by using endoproteinase Glu-C as the digestive enzyme. J Chromatogr B Analyt Technol Biomed Life Sci, 817(1): 81–88
CrossRef
Pubmed
Google scholar
|
[172] |
Semaan S M, Wang X, Stewart P A, Marshall A G, Sang Q X (2011). Differential phosphopeptide expression in a benign breast tissue, and triple-negative primary and metastatic breast cancer tissues from the same African-American woman by LC-LTQ/FT-ICR mass spectrometry. Biochem Biophys Res Commun, 412(1): 127–131
CrossRef
Pubmed
Google scholar
|
[173] |
Sethuraman M, McComb M E, Huang H, Huang S, Heibeck T, Costello C E, Cohen R A (2004). Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res, 3(6): 1228–1233
CrossRef
Pubmed
Google scholar
|
[174] |
Shilov I V, Seymour S L, Patel A A, Loboda A, Tang W H, Keating S P, Hunter C L, Nuwaysir L M, Schaeffer D A (2007). The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics, 6(9): 1638–1655
CrossRef
Pubmed
Google scholar
|
[175] |
Simon E S, Young M, Chan A, Bao Z Q, Andrews P C (2008). Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Anal Biochem, 377(2): 234–242
CrossRef
Pubmed
Google scholar
|
[177] |
Siuti N, Kelleher N L (2007). Decoding protein modifications using top-down mass spectrometry. Nat Methods, 4(10): 817–821
CrossRef
Pubmed
Google scholar
|
[178] |
Steen H, Jebanathirajah J A, Springer M, Kirschner M W (2005). Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci USA, 102(11): 3948–3953
CrossRef
Pubmed
Google scholar
|
[179] |
Stensballe A, Jensen O N (2004). Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Rapid Commun Mass Spectrom, 18(15): 1721–1730
CrossRef
Pubmed
Google scholar
|
[180] |
Stupak J, Liu H, Wang Z, Brix B J, Fliegel L, Li L (2005). Nanoliter sample handling combined with microspot MALDI-MS for detection of gel-separated phosphoproteins. J Proteome Res, 4(2): 515–522
CrossRef
Pubmed
Google scholar
|
[181] |
Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007). Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics, 6(6): 1103–1109
CrossRef
Pubmed
Google scholar
|
[182] |
Sui S, Wang J, Lu Z, Cai Y, Zhang Y, Yu W, Qian X (2008). Phosphopeptide enrichment strategy based on strong cation exchange chromatography. Se Pu, 26(2): 195–199
CrossRef
Pubmed
Google scholar
|
[183] |
Swaney D L, McAlister G C, Wirtala M, Schwartz J C, Syka J E, Coon J J (2007). Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem, 79(2): 477–485
CrossRef
Pubmed
Google scholar
|
[184] |
Sweet S M, Creese A J, Cooper H J (2006). Strategy for the identification of sites of phosphorylation in proteins: neutral loss triggered electron capture dissociation. Anal Chem, 78(21): 7563–7569
CrossRef
Pubmed
Google scholar
|
[185] |
Syka J E, Coon J J, Schroeder M J, Shabanowitz J, Hunt D F (2004a). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA, 101(26): 9528–9533
CrossRef
Pubmed
Google scholar
|
[186] |
Syka J E, Marto J A, Bai D L, Horning S, Senko M W, Schwartz J C, Ueberheide B, Garcia B, Busby S, Muratore T, Shabanowitz J, Hunt D F (2004b). Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J Proteome Res, 3(3): 621–626
CrossRef
Pubmed
Google scholar
|
[188] |
Taouatas N, Mohammed S, Heck A J (2011). Exploring new proteome space: combining Lys-N proteolytic digestion and strong cation exchange (SCX) separation in peptide-centric MS-driven proteomics. Methods Mol Biol, 753: 157–167
CrossRef
Pubmed
Google scholar
|
[189] |
Tasaki S, Nagasaki M, Kozuka-Hata H, Semba K, Gotoh N, Hattori S, Inoue J, Yamamoto T, Miyano S, Sugano S, Oyama M (2010). Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling. PLoS ONE, 5(11): e13926
CrossRef
Pubmed
Google scholar
|
[190] |
Taus T, Köcher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011). Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res, 10(12): 5354–5362
CrossRef
Pubmed
Google scholar
|
[191] |
Thingholm T E, Jensen O N, Larsen M R (2009). Analytical strategies for phosphoproteomics. Proteomics, 9(6): 1451–1468
CrossRef
Pubmed
Google scholar
|
[192] |
Thingholm T E, Jensen O N, Robinson P J, Larsen M R (2008). SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics, 7(4): 661–671
CrossRef
Pubmed
Google scholar
|
[193] |
Thingholm T E, Jørgensen T J, Jensen O N, Larsen M R (2006). Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc, 1(4): 1929–1935
CrossRef
Pubmed
Google scholar
|
[194] |
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C (2003). Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 75(8): 1895–1904
CrossRef
Pubmed
Google scholar
|
[195] |
Villa S, De Fazio G, Canosi U (1989). Cyanogen bromide cleavage at methionine residues of polypeptides containing disulfide bonds. Anal Biochem, 177(1): 161–164
CrossRef
Pubmed
Google scholar
|
[196] |
Villen J, Beausoleil S A, Gerber S A, Gygi S P (2007). Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA, 104(5): 1488–1493
CrossRef
Pubmed
Google scholar
|
[197] |
Villen J, Gygi S P (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc, 3(10): 1630–1638
CrossRef
Pubmed
Google scholar
|
[198] |
Wang G, Wu W W, Zeng W, Chou C L, Shen R F (2006). Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J Proteome Res, 5(5): 1214–1223
CrossRef
Pubmed
Google scholar
|
[199] |
Wang S, Basson M D (2011). Akt directly regulates focal adhesion kinase through association and serine phosphorylation: implication for pressure-induced colon cancer metastasis. Am J Physiol Cell Physiol, 300(3): C657–C670
CrossRef
Pubmed
Google scholar
|
[200] |
Wang X, Stewart P A, Cao Q, Sang Q X, Chung L W, Emmett M R, Marshall A G (2011). Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res, 10(9): 3920–3928
CrossRef
Pubmed
Google scholar
|
[201] |
Wang Y T, Tsai C F, Hong T C, Tsou C C, Lin P Y, Pan S H, Hong T M, Yang P C, Sung T Y, Hsu W L, Chen Y J (2010). An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res, 9(11): 5582–5597
CrossRef
Pubmed
Google scholar
|
[202] |
Washburn M P, Wolters D, Yates J R 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 19(3): 242–247
CrossRef
Pubmed
Google scholar
|
[203] |
Whitelegge J, Halgand F, Souda P, Zabrouskov V (2006). Top-down mass spectrometry of integral membrane proteins. Expert Rev Proteomics, 3(6): 585–596
CrossRef
Pubmed
Google scholar
|
[204] |
Wolschin F, Weckwerth W (2005). Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods, 1(1): 9
CrossRef
Pubmed
Google scholar
|
[205] |
Wolschin F, Wienkoop S, Weckwerth W (2005). Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics, 5(17): 4389–4397
CrossRef
Pubmed
Google scholar
|
[206] |
Wu J, Shakey Q, Liu W, Schuller A, Follettie M T (2007). Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res, 6(12): 4684–4689
CrossRef
Pubmed
Google scholar
|
[207] |
Wu J, Warren P, Shakey Q, Sousa E, Hill A, Ryan T E, He T (2010). Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides. Proteomics, 10(11): 2224–2234
CrossRef
Pubmed
Google scholar
|
[208] |
Xiao G G, Recker R R, Deng H W (2008). Recent advances in proteomics and cancer biomarker discovery. Clin Med Oncol, 2: 63–72
Pubmed
|
[209] |
Xie X, Feng S, Vuong H, Liu Y, Goodison S, Lubman D M (2010). A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis, 31(11): 1842–1852
CrossRef
Pubmed
Google scholar
|
[210] |
Xu Y M, Zhu F, Cho Y Y, Carper A, Peng C, Zheng D, Yao K, Lau A T, Zykova T A, Kim H G, Bode A M, Dong Z (2010). Extracellular signal-regulated kinase 8-mediated c-Jun phosphorylation increases tumorigenesis of human colon cancer. Cancer Res, 70(8): 3218–3227
CrossRef
Pubmed
Google scholar
|
[211] |
Yachie N, Saito R, Sugahara J, Tomita M, Ishihama Y (2009). In silico analysis of phosphoproteome data suggests a rich-get-richer process of phosphosite accumulation over evolution. Mol Cell Proteomics, 8(5): 1061–1071
CrossRef
Pubmed
Google scholar
|
[212] |
Yan W, Lee H, Deutsch E W, Lazaro C A, Tang W, Chen E, Fausto N, Katze M G, Aebersold R (2004). A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry. Mol Cell Proteomics, 3(10): 1039–1041
CrossRef
Pubmed
Google scholar
|
[213] |
Yang F, Wu S, Stenoien D L, Zhao R, Monroe M E, Gritsenko M A, Purvine S O, Polpitiya A D, Tolić N, Zhang Q, Norbeck A D, Orton D J, Moore R J, Tang K, Anderson G A, Pasa-Tolić L, Camp D G 2nd, Smith R D (2009). Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides. Anal Chem, 81(10): 4137–4143
CrossRef
Pubmed
Google scholar
|
[214] |
Yang X J (2005). Multisite protein modification and intramolecular signaling. Oncogene, 24(10): 1653–1662
CrossRef
Pubmed
Google scholar
|
[215] |
Yates J R, Cociorva D, Liao L, Zabrouskov V (2006). Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Anal Chem, 78(2): 493–500
CrossRef
Pubmed
Google scholar
|
[216] |
Yates J R 3rd, Eng J K, McCormack A L, Schieltz D (1995). Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 67(8): 1426–1436
CrossRef
Pubmed
Google scholar
|
[217] |
Yi E C, Li X J, Cooke K, Lee H, Raught B, Page A, Aneliunas V, Hieter P, Goodlett D R, Aebersold R (2005). Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics, 5(2): 380–387
CrossRef
Pubmed
Google scholar
|
[218] |
Yu L R, Issaq H J, Veenstra T D (2007). Phosphoproteomics for the discovery of kinases as cancer biomarkers and drug targets. Proteomics Clin Appl, 1(9): 1042–1057
CrossRef
Pubmed
Google scholar
|
[219] |
Yu P T, Babicky M, Jaquish D, French R, Marayuma K, Mose E, Niessen S, Hoover H, Shields D, Cheresh D, Cravatt B F, Lowy A M (2012). The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int J Cancer, 131(8): 1744–1754
CrossRef
Pubmed
Google scholar
|
[220] |
Yu Y P, Luo J H (2011). Phosphorylation and interaction of myopodin by integrin-link kinase lead to suppression of cell growth and motility in prostate cancer cells. Oncogene, 30(49): 4855–4863
CrossRef
Pubmed
Google scholar
|
[221] |
Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, Wu R, Ye M, Zou H (2009). Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Anal Chim Acta, 636(1): 34–41
CrossRef
Pubmed
Google scholar
|
[222] |
Zanivan S, Krueger M, Mann M (2012). In vivo quantitative proteomics: the SILAC mouse. Methods Mol Biol, 757: 435–450
CrossRef
Pubmed
Google scholar
|
[223] |
Zarei M, Sprenger A, Gretzmeier C, Dengjel J (2012). Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis. J Proteome Res, 11(8): 4269–4276
CrossRef
Pubmed
Google scholar
|
[224] |
Zgoła-Grzeskowiak A, Grzeskowiak T (2011). The use of a triple quadrupole linear ion trap mass spectrometer with electrospray ionisation for fragmentation studies of selected antifungal drugs. Rapid Commun Mass Spectrom, 25(20): 3049–3055
CrossRef
Pubmed
Google scholar
|
[225] |
Zhai B, Villén J, Beausoleil S A, Mintseris J, Gygi S P (2008). Phosphoproteome analysis of Drosophila melanogaster embryos. J Proteome Res, 7(4): 1675–1682
CrossRef
Pubmed
Google scholar
|
[226] |
Zhang G, Fang B, Liu R Z, Lin H, Kinose F, Bai Y, Oguz U, Remily-Wood E R, Li J, Altiok S, Eschrich S, Koomen J, Haura E B (2011a). Mass spectrometry mapping of epidermal growth factor receptor phosphorylation related to oncogenic mutations and tyrosine kinase inhibitor sensitivity. J Proteome Res, 10(1): 305–319
CrossRef
Pubmed
Google scholar
|
[227] |
Zhang P X, Wang Y, Liu Y, Jiang G Y, Li Q C, Wang E H (2011b). p120-catenin isoform 3 regulates subcellular localization of Kaiso and promotes invasion in lung cancer cells via a phosphorylation-dependent mechanism. Int J Oncol, 38(6): 1625–1635
Pubmed
|
[228] |
Zhao S, Venkatasubbarao K, Lazor J W, Sperry J, Jin C, Cao L, Freeman J W (2008). Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res, 68(11): 4221–4228
CrossRef
Pubmed
Google scholar
|
[229] |
Zhong J, Kim M S, Chaerkady R, Wu X, Huang T C, Getnet D, Mitchell C J, Palapetta S M, Sharma J, O'Meally R N, Cole R N, Yoda A, Moritz A, Loriaux M M, Rush J, Weinstock D M, Tyner J W, Pandey A (2012). TSLP signaling network revealed by SILAC-based phosphoproteomics. Mol Cell Proteomics, 11(6):M112.017764
|
[230] |
Zhou H, Tian R, Ye M, Xu S, Feng S, Pan C, Jiang X, Li X, Zou H (2007). Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis, 28(13): 2201–2215
CrossRef
Pubmed
Google scholar
|
[231] |
Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008). Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res, 7(9): 3957–3967
CrossRef
Pubmed
Google scholar
|
[232] |
Zhou W, Capello M, Fredolini C, Piemonti L, Liotta L A, Novelli F, Petricoin E F (2011). Proteomic analysis of pancreatic ductal adenocarcinoma cells reveals metabolic alterations. J Proteome Res, 10(4): 1944–1952
CrossRef
Pubmed
Google scholar
|
[233] |
Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta L A, Novelli F, Petricoin E F (2012a). Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res, 11(2): 554–563
CrossRef
Pubmed
Google scholar
|
[234] |
Zhou W, Liotta L A, Petricoin E F (2012b). The spectra count label-free quantitation in cancer proteomics. Cancer Genomics Proteomics, 9(3): 135–142
Pubmed
|
[235] |
Zubarev R A (2004). Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol, 15(1):12–16
|
/
〈 | 〉 |