Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease
Received date: 11 Jul 2012
Accepted date: 06 Aug 2012
Published date: 01 Oct 2012
Copyright
Huntington’s disease (HD) is one of the most common dominantly-inherited neurodegenerative disorders and is caused by a CAG repeat expansion in the huntingtin gene. HD is characterized by selective degeneration of subpopulations of neurons in the brain, however the precise underlying mechanisms how a ubiquitously expressed disease protein could target specific types of neurons for degeneration remains a critical, yet unanswered question for HD and other major neurodegenerative disorders. In this review, we describe the expanding view of selective neuronal vulnerability in HD, based on recent neuropathological and neuroimaging studies. We will also summarize the systematic effort to define the cell types in which mutant Huntingtin expression is critical for pathogenesis of vulnerable neurons in the striatum and cortex. Finally, we will describe selected, emerging molecular mechanisms that are implicated in selective disease processes in HD. Together, the field has begun to appreciate the distinct molecular pathogenic roles of mutant huntingtin in different cell types that may contribute to the selective neuronal vulnerability, with dissection of such mechanisms likely to yield novel molecular targets for HD therapy.
Jeffrey P. CANTLE , Xiao-Hong LU , Xiaofeng GU , X. William YANG . Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Frontiers in Biology, 2012 , 7(5) : 459 -476 . DOI: 10.1007/s11515-012-1246-7
1 |
AikenC T, SteffanJ S, GuerreroC M, KhashwjiH, LukacsovichT, SimmonsD, PurcellJ M, MenhajiK, ZhuY Z, GreenK, LaferlaF, HuangL, ThompsonL M, MarshJ L (2009). Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem, 284(43): 29427–29436
|
2 |
AlbinR L, ReinerA, AndersonK D, DureL S 4th, HandelinB, BalfourR, WhetsellW O Jr, PenneyJ B, YoungA B (1992). Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol, 31(4): 425–430
|
3 |
AlbinR L, ReinerA, AndersonK D, PenneyJ B, YoungA B (1990). Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol, 27(4): 357–365
|
4 |
AltarC A, CaiN, BlivenT, JuhaszM, ConnerJ M, AchesonA L, LindsayR M, WiegandS J (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389(6653): 856–860
|
5 |
ArningL, SaftC, WieczorekS, AndrichJ, KrausP H, EpplenJ T (2007). NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet, 122(2): 175–182
|
6 |
ArreguiL, BenítezJ A, RazgadoL F, VergaraP, SegoviaJ (2011). Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol, 31(8): 1229–1243
|
7 |
AtwalR S, DesmondC R, CaronN, MaiuriT, XiaJ, SipioneS, TruantR (2011). Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol, 7(7): 453–460
|
8 |
AverbackP (1980). Histopathology of acute cell loss in Huntington’s chorea brain. J Pathol, 132(1): 55–61
|
9 |
AylwardE H, SparksB F, FieldK M, YallapragadaV, ShpritzB D, RosenblattA, BrandtJ, GourleyL M, LiangK, ZhouH, MargolisR L, RossC A (2004). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology, 63(1): 66–72
|
10 |
BealM F, KowallN W, EllisonD W, MazurekM F, SwartzK J, MartinJ B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321(6066): 168–171
|
11 |
BehrensP F, FranzP, WoodmanB, LindenbergK S, LandwehrmeyerG B (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain, 125(Pt 8): 1908–1922
|
12 |
BezprozvannyI, HaydenM R (2004). Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun, 322(4): 1310–1317
|
13 |
BezziP, GundersenV, GalbeteJ L, SeifertG, SteinhäuserC, PilatiE, VolterraA (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 7(6): 613–620
|
14 |
BiglanK M, RossC A, LangbehnD R, AylwardE H, StoutJ C, QuellerS, CarlozziN E, DuffK, BeglingerL J, PaulsenJ S, PREDICT-HD Investigators of the Huntington Study Group (2009). Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord, 24(12): 1763–1772
|
15 |
BradfordJ, ShinJ Y, RobertsM, WangC E, LiX J, LiS (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A, 106(52): 22480–22485
|
16 |
BradfordJ, ShinJ Y, RobertsM, WangC E, ShengG, LiS, LiX J (2010). Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem, 285(14): 10653–10661
|
17 |
BrownA M, RansomB R (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55(12): 1263–1271
|
18 |
BrownT B, BogushA I, EhrlichM E (2008). Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet, 17(20): 3095–3104
|
19 |
BrowneS E, BealM F (2004). The energetics of Huntington’s disease. Neurochem Res, 29(3): 531–546
|
20 |
BurnettC, ValentiniS, CabreiroF, GossM, SomogyváriM, PiperM D, HoddinottM, SutphinG L, LekoV, McElweeJ J, Vazquez-ManriqueR P, OrfilaA M, AckermanD, AuC, VintiG, RiesenM, HowardK, NeriC, BedalovA, KaeberleinM, SotiC, PartridgeL, GemsD (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 477(7365): 482–485
|
21 |
BydderG M, SteinerR E, YoungI R, HallA S, ThomasD J, MarshallJ, PallisC A, LeggN J (1982). Clinical NMR imaging of the brain: 140 cases. AJR Am J Roentgenol, 139(2): 215–236
|
22 |
CampesanS, GreenE W, BredaC, SathyasaikumarK V, MuchowskiP J, SchwarczR, KyriacouC P, GiorginiF (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol, 21(11): 961–966
|
23 |
CanalsJ M, PinedaJ R, Torres-PerazaJ F, BoschM, Martín-IbañezR, MuñozM T, MengodG, ErnforsP, AlberchJ (2004). Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci, 24(35): 7727–7739
|
24 |
ChaJ H J, FreyA S, AlsdorfS A, KernerJ A, KosinskiC M, MangiariniL, PenneyJ B Jr, DaviesS W, BatesG P, YoungA B (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci, 354(1386): 981–989
|
25 |
CheH V B, MetzgerS, PortalE, DeyleC, RiessO, NguyenH P (2011). Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener, 6(1): 1
|
26 |
ChoS R, BenraissA, ChmielnickiE, SamdaniA, EconomidesA, GoldmanS A (2007). Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest, 117(10): 2889–2902
|
27 |
ChoiY S, LeeB, ChoH Y, ReyesI B, PuX A, SaidoT C, HoytK R, ObrietanK (2009). CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis, 36(2): 259–268
|
28 |
ChouS Y, WengJ Y, LaiH L, LiaoF, SunS H, TuP H, DicksonD W, ChernY (2008). Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci, 28(13): 3277–3290
|
29 |
CrookZ R, HousmanD (2011). Huntington’s disease: can mice lead the way to treatment?Neuron, 69(3): 423–435
|
30 |
CudkowiczM, KowallN W (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol, 27(2): 200–204
|
31 |
CuiL, JeongH, BoroveckiF, ParkhurstC N, TaneseN, KraincD (2006). Transcriptional repression of PGC-1αby mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127(1): 59–69
|
32 |
DamianoM, GalvanL, DéglonN, BrouilletE (2010). Mitochondria in Huntington’s disease. Biochim Biophys Acta, 1802(1): 52–61
|
33 |
de la MonteS M, VonsattelJ P, RichardsonE P Jr, (1988). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol, 47(5): 516–525
|
34 |
Di PardoA, MaglioneV, AlpaughM, HorkeyM, AtwalR S, SassoneJ, CiammolaA, SteffanJ S, FouadK, TruantR, SipioneS (2012). Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A, 109(9): 3528–3533
|
35 |
DiFigliaM, SappE, ChaseK, SchwarzC, MeloniA, YoungC, MartinE, VonsattelJ P, CarrawayR, ReevesS A, et al (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14(5): 1075–1081
|
36 |
DiFigliaM, SappE, ChaseK O, DaviesS W, BatesG P, VonsattelJ P, AroninN (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277(5334): 1990–1993
|
37 |
DiFigliaM, Sena-EstevesM, ChaseK, SappE, PfisterE, SassM, YoderJ, ReevesP, PandeyR K, RajeevK G, ManoharanM, SahD W, ZamoreP D, AroninN (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A, 104(43): 17204–17209
|
38 |
DonmezG (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci,33(9): 494–501
|
39 |
DuffK, PaulsenJ S, BeglingerL J, LangbehnD R, WangC, StoutJ C, RossC A, AylwardE, CarlozziN E, QuellerS, and the Predict-HD Investigators of the Huntington Study Group (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci, 22(2): 196–207
|
40 |
DumasE M, van den BogaardS J A, RuberM E, ReilmanR R, StoutJ C, CraufurdD, HicksS L, KennardC, TabriziS J, van BuchemM A, van der GrondJ, RoosR A (2012). Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp, 33(1): 203–212
|
41 |
DuyaoM P, AuerbachA B, RyanA, PersichettiF, BarnesG T, McNeilS M, GeP, VonsattelJ P, GusellaJ F, JoynerA L,
|
42 |
EhrnhoeferD E, SuttonL, HaydenM R(2011). Small Changes, Big Impact: Posttranslational Modifications and Function of Huntingtin in Huntington Disease. Neuroscientist, 17(5): 475–492
|
43 |
FaideauM, KimJ, CormierK, GilmoreR, WelchM, AureganG, DufourN, GuillermierM, BrouilletE, HantrayeP, DéglonN, FerranteR J, BonventoG (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet, 19(15): 3053–3067
|
44 |
FerranteR J, KowallN W, BealM F, MartinJ B, BirdE D, RichardsonE P Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol, 46(1): 12–27
|
45 |
FerranteR J, KowallN W, BealM F, RichardsonE P Jr, BirdE D, MartinJ B (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230(4725): 561–563
|
46 |
FiaccoT A, McCarthyK D (2004). Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci, 24(3): 722–732
|
47 |
FuscoF R, ChenQ, LamoreauxW J, Figueredo-CardenasG, JiaoY, CoffmanJ A, SurmeierD J, HonigM G, CarlockL R, ReinerA (1999). Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci, 19(4): 1189–1202
|
48 |
GafniJ, PapanikolaouT, DegiacomoF, HolcombJ, ChenS, MenalledL, KudwaA, FitzpatrickJ, MillerS, RambozS, TuunanenP I, LehtimäkiK K, YangX W, ParkL, KwakS, HowlandD, ParkH, EllerbyL M (2012). Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci, 32(22): 7454–7465
|
49 |
GauthierL R, CharrinB C, Borrell-PagèsM, DompierreJ P, RangoneH, CordelièresF P, De MeyJ, MacDonaldM E, LessmannV, HumbertS, SaudouF (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118(1): 127–138
|
50 |
GlassC K, SaijoK, WinnerB, MarchettoM C, GageF H (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6): 918–934
|
51 |
GorskiJ A, TalleyT, QiuM, PuellesL, RubensteinJ L R, JonesK R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci, 22(15): 6309–6314
|
52 |
GrahamR K, DengY, CarrollJ, VaidK, CowanC, PouladiM A, MetzlerM, BissadaN, WangL, FaullR L M, GrayM, YangX W, RaymondL A, HaydenM R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci, 30(45): 15019–15029
|
53 |
GrahamR K, DengY, SlowE J, HaighB, BissadaN, LuG, PearsonJ, ShehadehJ, BertramL, MurphyZ, WarbyS C, DotyC N, RoyS, WellingtonC L, LeavittB R, RaymondL A, NicholsonD W, HaydenM R (2006). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 125(6): 1179–1191
|
54 |
GrayM, ShirasakiD I, CepedaC, AndréV M, WilburnB, LuX H, TaoJ, YamazakiI, LiS H, SunY E, LiX J, LevineM S, YangX W (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci, 28(24): 6182–6195
|
55 |
GraybielA M (2000). The basal ganglia. Curr Biol, 10(14): R509–R511
|
56 |
GreinerE R, YangX W (2011). Huntington’s disease: flipping a switch on huntingtin. Nat Chem Biol, 7(7): 412–414
|
57 |
GuX, AndréV M, CepedaC, LiS H, LiX J, LevineM S, YangX W (2007). Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener, 2: 8
|
58 |
GuX, GreinerE R, MishraR, KodaliR, OsmandA, FinkbeinerS, SteffanJ S, ThompsonL M, WetzelR, YangX W (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron, 64(6): 828–840
|
59 |
GuX, LiC, WeiW, LoV, GongS, LiS H, IwasatoT, ItoharaS, LiX J, ModyI, HeintzN, YangX W (2005). Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron, 46(3): 433–444
|
60 |
GuarenteL (2007). Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol, 72: 483–488
|
61 |
GuidettiP, BatesG P, GrahamR K, HaydenM R, LeavittB R, MacDonaldM E, SlowE J, WheelerV C, WoodmanB, SchwarczR (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 23(1): 190–197
|
62 |
GutekunstC A, LiS H, YiH, MulroyJ S, KuemmerleS, JonesR, RyeD, FerranteR J, HerschS M, LiX J (1999). Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci, 19(7): 2522–2534
|
63 |
HardinghamG E, BadingH (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci, 26(2): 81–89
|
64 |
HardinghamG E, BadingH(2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 682(11): 1–15
|
65 |
HarperS Q, StaberP D, HeX, EliasonS L, MartinsI H, MaoQ, YangL, KotinR M, PaulsonH L, DavidsonB L (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A, 102(16): 5820–5825
|
66 |
HarrisG J, PearlsonG D, PeyserC E, AylwardE H, RobertsJ, BartaP E, ChaseG A, FolsteinS E (1992). Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol, 31(1): 69–75
|
67 |
HarrisonL M (2012). Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology. Cell Mol Neurobiol, 32(6): 907–918
|
68 |
HedreenJ C, PeyserC E, FolsteinS E, RossC A (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett, 133(2): 257–261
|
69 |
HengM Y, DetloffP J, AlbinR L (2008). Rodent genetic models of Huntington disease. Neurobiol Dis, 32(1): 1–9
|
70 |
HengM Y, DetloffP J, WangP L, TsienJ Z, AlbinR L (2009). In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci, 29(10): 3200–3205
|
71 |
HodgsonJ G, AgopyanN, GutekunstC A, LeavittB R, LePianeF, SingarajaR, SmithD J, BissadaN, McCutcheonK, NasirJ, JamotL, LiX J, StevensM E, RosemondE, RoderJ C, PhillipsA G, RubinE M, HerschS M, HaydenM R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1): 181–192
|
72 |
HolmesS E, O’HearnE, RosenblattA, CallahanC, HwangH S, Ingersoll-AshworthR G, FleisherA, StevaninG, BriceA, PotterN T, RossC A, MargolisR L (2001). A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet, 29(4): 377–378
|
73 |
HoutkooperR H, PirinenE, AuwerxJ (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13(4): 225–238
|
74 |
HultS, SoyluR, BjörklundT, BelgardtB F, MauerJ, BrüningJ C, KirikD, PetersénÅ (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab, 13(4): 428–439
|
75 |
HumbertS, BrysonE A, CordelièresF P, ConnorsN C, DattaS R, FinkbeinerS, GreenbergM E, SaudouF (2002). The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell, 2(6): 831–837
|
76 |
IwasatoT, DatwaniA, WolfA M, NishiyamaH, TaguchiY, TonegawaS, KnöpfelT, ErzurumluR S, ItoharaS (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731
|
77 |
JauchD, UrbańskaE M, GuidettiP, BirdE D, VonsattelJ P, WhetsellW O Jr, SchwarczR (1995). Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci, 130(1): 39–47
|
78 |
JeongH, CohenD E, CuiL, SupinskiA, SavasJ N, MazzulliJ R, YatesJ R 3rd, BordoneL, GuarenteL, KraincD (2012). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med, 18(1): 159–165
|
79 |
JeongH, ThenF, MeliaT J Jr, MazzulliJ R, CuiL, SavasJ N, VoisineC, PaganettiP, TaneseN, HartA C, YamamotoA, KraincD (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72
|
80 |
JerniganT L, SalmonD P, ButtersN, HesselinkJ R (1991). Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry, 29(1): 68–81
|
81 |
JiangM, WangJ, FuJ, DuL, JeongH, WestT, XiangL, PengQ, HouZ, CaiH, SeredeninaT, ArbezN, ZhuS, SommersK, QianJ, ZhangJ, MoriS, YangX W, TamashiroK L, AjaS, MoranT H, Luthi-CarterR, MartinB, MaudsleyS, MattsonM P, CichewiczR H, RossC A, HoltzmanD M, KraincD, DuanW (2012). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med, 18(1): 153–158
|
82 |
JohriA, CalingasanN Y, HennesseyT M, SharmaA, YangL, WilleE, ChandraA, BealM F (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet, 21(5): 1124–1137
|
83 |
KimJ, MoodyJ P, EdgerlyC K, BordiukO L, CormierK, SmithK, BealM F, FerranteR J (2010). Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet, 19(20): 3919–3935
|
84 |
KitaH, KitaiS T (1988). Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res, 447(2): 346–352
|
85 |
KlöppelS, DraganskiB, GoldingC V, ChuC, NagyZ, CookP A, HicksS L, KennardC, AlexanderD C, ParkerG J M, TabriziS J, FrackowiakR S (2008). White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain, 131(Pt 1): 196–204
|
86 |
KolodziejL R, PaleologE M, WilliamsR O (2011). Kynurenine metabolism in health and disease. Amino Acids, 41(5): 1173–1183
|
87 |
KordasiewiczH B, StanekL M, WancewiczE V, MazurC, McAlonisM M, PytelK A, ArtatesJ W, WeissA, ChengS H, ShihabuddinL S, HungG, BennettC F, ClevelandD W (2012). Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron, 74(6): 1031–1044
|
88 |
KovácsK A, SteulletP, SteinmannM, DoK Q, MagistrettiP J, HalfonO, CardinauxJ R (2007). TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A, 104(11): 4700–4705
|
89 |
LangeH, ThörnerG, HopfA, SchröderK F (1976). Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci, 28(4): 401–425
|
90 |
LevineM S, KlapsteinG J, KoppelA, GruenE, CepedaC, VargasM E, JokelE S, CarpenterE M, ZanjaniH, HurstR S, EfstratiadisA, ZeitlinS, ChesseletM F (1999). Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res, 58(4): 515–532
|
91 |
LiH, LiS H, JohnstonH, ShelbourneP F, LiX J (2000). Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet, 25(4): 385–389
|
92 |
LiL, FanM, IctonC D, ChenN, LeavittB R, HaydenM R, MurphyT H, RaymondL A (2003). Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging, 24(8): 1113–1121
|
93 |
LiS, ZhangC, TakemoriH, ZhouY, XiongZ Q (2009). TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci, 29(8): 2334–2343
|
94 |
LiévensJ C, WoodmanB, MahalA, Spasic-BoscovicO, SamuelD, Kerkerian-Le GoffL, BatesG P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis, 8(5): 807–821
|
95 |
LinJ, WuP H, TarrP T, LindenbergK S, St-PierreJ, ZhangC Y, MoothaV K, JägerS, ViannaC R, ReznickR M, CuiL, ManieriM, DonovanM X, WuZ, CooperM P, FanM C, RohasL M, ZavackiA M, CintiS, ShulmanG I, LowellB B, KraincD, SpiegelmanB M (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119(1): 121–135
|
96 |
LinJ, YangR, TarrP T, WuP H, HandschinC, LiS, YangW, PeiL, UldryM, TontonozP, NewgardC B, SpiegelmanB M (2005). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell, 120(2): 261–273
|
97 |
LuX H, YangX W (2012). “Huntingtin Holiday”: Progress toward an Antisense Therapy for Huntington’s Disease. Neuron, 74(6): 964–966
|
98 |
LunkesA, LindenbergK S, Ben-HaïemL, WeberC, DevysD, LandwehrmeyerG B, MandelJ L, TrottierY (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell, 10(2): 259–269
|
99 |
Luthi-CarterR, StrandA, PetersN L, SolanoS M, HollingsworthZ R, MenonA S, FreyA S, SpektorB S, PenneyE B, SchillingG, RossC A, BorcheltD R, TapscottS J, YoungA B, ChaJ H, OlsonJ M (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet, 9(9): 1259–1271
|
100 |
MacdonaldV, HallidayG (2002). Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis, 10(3): 378–386
|
101 |
MangiariniL, SathasivamK, SellerM, CozensB, HarperA, HetheringtonC, LawtonM, TrottierY, LehrachH, DaviesS W, BatesG P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3): 493–506
|
102 |
MannD M, OliverR, SnowdenJ S (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol, 85(5): 553–559
|
103 |
MantamadiotisT, LembergerT, BleckmannS C, KernH, KretzO, Martin VillalbaA, TroncheF, KellendonkC, GauD, KapfhammerJ, OttoC, SchmidW, SchützG (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat Genet, 31(1): 47–54
|
104 |
MattssonB, GottfriesC G, RoosB E, WinbladB (1974). Huntington’s chorea: pathology and brain amines. Acta Psychiatr Scand Suppl, 255: 269–277
|
105 |
McBrideJ L, BoudreauR L, HarperS Q, StaberP D, MonteysA M, MartinsI, GilmoreB L, BursteinH, PelusoR W, PoliskyB, CarterB J, DavidsonB L (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A, 105(15): 5868–5873
|
106 |
McGillJ K, BealM F (2006). PGC-1α, a new therapeutic target in Huntington’s disease?Cell, 127(3): 465–468
|
107 |
MenalledL, El-KhodorB F, PatryM, Suárez-FariñasM, OrensteinS J, ZahaskyB, LeahyC, WheelerV, YangX W, MacDonaldM E, MortonA J, BatesG, LeedsJ, ParkL, HowlandD, SignerE, TobinA, BrunnerD (2009). Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis, 35(3): 319–336
|
108 |
MenalledL B, SisonJ D, DragatsisI, ZeitlinS, ChesseletM F O (2003). Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol, 465(1): 11–26
|
109 |
MetzlerM, GanL, MazareiG, GrahamR K, LiuL, BissadaN, LuG, LeavittB R, HaydenM R (2010). Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci, 30(43): 14318–14329
|
110 |
MillerB R, DornerJ L, ShouM, SariY, BartonS J, SengelaubD R, KennedyR T, RebecG V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 153(1): 329–337
|
111 |
MillerJ P, HolcombJ, Al-RamahiI, de HaroM, GafniJ, ZhangN, KimE, SanhuezaM, TorcassiC, KwakS, BotasJ, HughesR E, EllerbyL M (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron, 67(2): 199–212
|
112 |
MilnerwoodA J, CummingsD M, DalléracG M, BrownJ Y, VatsavayaiS C, HirstM C, RezaieP, MurphyK P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet, 15(10): 1690–1703
|
113 |
MilnerwoodA J, GladdingC M, PouladiM A, KaufmanA M, HinesR M, BoydJ D, KoR W Y, VasutaO C, GrahamR K, HaydenM R, MurphyT H, RaymondL A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 65(2): 178–190
|
114 |
MilnerwoodA J, RaymondL A (2010). Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci, 33(11): 513–523
|
115 |
MyersR H, VonsattelJ P, PaskevichP A, KielyD K, StevensT J, CupplesL A, RichardsonE P Jr, BirdE D (1991). Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol, 50(6): 729–742
|
116 |
OkamotoS I, PouladiM A, TalantovaM, YaoD, XiaP, EhrnhoeferD E, ZaidiR, ClementeA, KaulM, GrahamR K, ZhangD, Vincent ChenH S, TongG, HaydenM R, LiptonS A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med,
|
117 |
OrrH T, ZoghbiH Y (2007). Trinucleotide repeat disorders. Annu Rev Neurosci, 30: 575–621
|
118 |
ParkerJ A, ArangoM, AbderrahmaneS, LambertE, TouretteC, CatoireH, NériC (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet, 37(4): 349–350
|
119 |
PaulsenJ S, HaydenM, StoutJ C, LangbehnD R, AylwardE, RossC A, GuttmanM, NanceM, KieburtzK, OakesD, ShoulsonI, KaysonE, JohnsonS, PenzinerE, Predict-HD Investigators of the Huntington Study Group (2006). Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol, 63(6): 883–890
|
120 |
PaulsenJ S, LangbehnD R, StoutJ C, AylwardE, RossC A, NanceM, GuttmanM, JohnsonS, MacDonaldM, BeglingerL J, DuffK, KaysonE, BiglanK, ShoulsonI, OakesD, HaydenM, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008). Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry, 79(8): 874–880
|
121 |
PaulsenJ S, WangC, DuffK, BarkerR, NanceM, BeglingerL, MoserD, WilliamsJ K, SimpsonS, LangbehnD, van KammenD P, and the PREDICT-HD Investigators of the Huntington Study Group (2010). Challenges assessing clinical endpoints in early Huntington disease. Mov Disord, 25(15): 2595–2603
|
122 |
PetersénÅ, BjörkqvistM (2006). Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci, 24(4): 961–967
|
123 |
PfriegerF W, UngererN (2011). Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res, 50(4): 357–371
|
124 |
Ramos,E. M., Latourelle,J. C., Lee,J.-H., Gillis,T., Mysore,J. S., Squitieri,F., Pardo,A., Donato,S., Hayden,M. R., Morrison,P. J.,
|
125 |
RatovitskiT, GucekM, JiangH, ChighladzeE, WaldronE, D’AmbolaJ, HouZ, LiangY, PoirierM A, HirschhornR R, GrahamR, HaydenM R, ColeR N, RossC A (2009). Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem, 284(16): 10855–10867
|
126 |
RaymondL A, AndréV M, CepedaC, GladdingC M, MilnerwoodA J, LevineM S (2011). Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience, 198: 252–273
|
127 |
ReadingS A J, YassaM A, BakkerA, DziornyA C, GourleyL M, YallapragadaV, RosenblattA, MargolisR L, AylwardE H, BrandtJ, MoriS, van ZijlP, BassettS S, RossC A (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res, 140(1): 55–62
|
128 |
ReinerA, AlbinR L, AndersonK D, D’AmatoC J, PenneyJ B, YoungA B (1988). Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A, 85(15): 5733–5737
|
129 |
ReinerA, DragatsisI, ZeitlinS, GoldowitzD (2003). Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol, 28(3): 259–276
|
130 |
RoosR A, BotsG T, HermansJ (1986). Quantitative analysis of morphological features in Huntington’s disease. Acta Neurol Scand, 73(2): 131–135
|
131 |
RosasH D, FeiginA S, HerschS M (2004). Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx, 1(2): 263–272
|
132 |
RosasH D, KoroshetzW J, ChenY I, SkeuseC, VangelM, CudkowiczM E, CaplanK, MarekK, SeidmanL J, MakrisN, JenkinsB G, GoldsteinJ M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10): 1615–1620
|
133 |
RosasH D, LeeS Y, BenderA C, ZaletaA K, VangelM, YuP, FischlB, PappuV, OnoratoC, ChaJ H, SalatD H, HerschS M (2010). Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4): 2995–3004
|
134 |
RosasH D, SalatD H, LeeS Y, ZaletaA K, HeveloneN, HerschS M (2008). Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci, 1147: 196–<OrgAddress>205</OrgAddress>
|
135 |
RosasH D, TuchD S, HeveloneN D, ZaletaA K, VangelM, HerschS M, SalatD H (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord, 21(9): 1317–1325
|
136 |
RossC A, TabriziS J (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol, 10(1): 83–98
|
137 |
RunneH, RégulierE, KuhnA, ZalaD, GokceO, PerrinV, SickB, AebischerP, DéglonN, Luthi-CarterR (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci, 28(39): 9723–9731
|
138 |
SavoiardoM, StradaL, OlivaD, GirottiF, D’IncertiL (1991). Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry, 54(10): 888–891
|
139 |
SchillingG, BecherM W, SharpA H, JinnahH A, DuanK, KotzukJ A, SluntH H, RatovitskiT, CooperJ K, JenkinsN A, CopelandN G, PriceD L, RossC A, BorcheltD R (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet, 8(3): 397–407
|
140 |
SchwarczR, BennettJ P Jr, CoyleJ T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem, 28(4): 867–869
|
141 |
SchwarczR, GuidettiP, SathyasaikumarK V, MuchowskiP J (2010). Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol, 90(2): 230–245
|
142 |
SharmaP, SavyL, BrittonJ, TaylorR, HowickA, PattonM (1996). Huntington’s disease: a molecular genetic and CT comparison. J Neurol Neurosurg Psychiatry, 60(2): 206–208
|
143 |
ShaywitzA J, GreenbergM E (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 68: 821–861
|
144 |
ShinJ Y, FangZ H, YuZ X, WangC E, LiS H, LiX J (2005). Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol, 171(6): 1001–1012
|
145 |
SimmonsD A, MehtaR A, LauterbornJ C, GallC M, LynchG (2011). Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice. Neurobiol Dis, 41(2): 436–444
|
146 |
SimmonsD A, RexC S, PalmerL, PandyarajanV, FedulovV, GallC M, LynchG (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A, 106(12): 4906–4911
|
147 |
SlowE J, van RaamsdonkJ, RogersD, ColemanS H, GrahamR K, DengY, OhR, BissadaN, HossainS M, YangY Z, LiX J, SimpsonE M, GutekunstC A, LeavittB R, HaydenM R (2003). Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet, 12(13): 1555–1567
|
148 |
SpampanatoJ, GuX, YangX W, ModyI (2008). Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience, 157(3): 606–620
|
149 |
SteffanJ S, AgrawalN, PallosJ, RockabrandE, TrotmanL C, SlepkoN, IllesK, LukacsovichT, ZhuY Z, CattaneoE, PandolfiP P, ThompsonL M, MarshJ L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104
|
150 |
StrandA D, BaquetZ C, AragakiA K, HolmansP, YangL, ClerenC, BealM F, JonesL, KooperbergC, OlsonJ M, JonesK R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci, 27(43): 11758–11768
|
151 |
SubramaniamS, SixtK M, BarrowR, SnyderS H (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324(5932): 1327–1330
|
152 |
SubramaniamS, SnyderS H (2011). Huntington’s disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology, 60(7–8): 1187–1192
|
153 |
TabriziS J, LangbehnD R, LeavittB R, RoosR A, DurrA, CraufurdD, KennardC, HicksS L, FoxN C, ScahillR I, BorowskyB, TobinA J, RosasH D, JohnsonH, ReilmannR, LandwehrmeyerB, StoutJ C, TRACK-HD investigators (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol, 8(9): 791–801
|
154 |
TabriziS J, ReilmannR, RoosR A C, DurrA, LeavittB, OwenG, JonesR, JohnsonH, CraufurdD, HicksS L, KennardC, LandwehrmeyerB, StoutJ C, BorowskyB, ScahillR I, FrostC, LangbehnD R, TRACK-HD investigators (2012). Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol, 11(1): 42–53
|
155 |
Tallaksen-GreeneS J, JaniszewskaA, BentonK, RuprechtL, AlbinR L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol, 225(2): 402–407
|
156 |
TebbenkampA T N, GreenC, XuG, Denovan-WrightE M, RisingA C, FromholtS E, BrownH H, SwingD, MandelR J, TessarolloL, BorcheltD R (2011). Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet, 20(14): 2770–2782
|
157 |
The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983
|
158 |
ThomasE A, CoppolaG, TangB, KuhnA, KimS, GeschwindD H, BrownT B, Luthi-Carter R, EhrlichM E (2011). In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet, 20(6): 1049–1060
|
159 |
ThompsonL M, AikenC T, KaltenbachL S, AgrawalN, IllesK, KhoshnanA, Martinez-VincenteM, ArrasateM, O’RourkeJ G, KhashwjiH, LukacsovichT, ZhuY Z, LauA L, MasseyA, HaydenM R, ZeitlinS O, FinkbeinerS, GreenK N, LaFerlaF M, BatesG, HuangL, PattersonP H, LoD C, CuervoA M, MarshJ L, SteffanJ S (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol, 187(7): 1083–1099
|
160 |
TsunemiT, AsheT D, MorrisonB E, SorianoK R, AuJ, RoqueR A V, LazarowskiE R, DamianV A, MasliahE, La SpadaA R (2012). PGC-1 rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med, 142(4): 142ra97
|
161 |
ValenzaM, LeoniV, KarasinskaJ M, PetriccaL, FanJ, CarrollJ, PouladiM A, FossaleE, NguyenH P, RiessO, MacDonaldM, WellingtonC, DiDonatoS, HaydenM, CattaneoE (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci, 30(32): 10844–10850
|
162 |
van den BogaardS J A, DumasE M, AcharyaT P, JohnsonH, LangbehnD R, ScahillR I, TabriziS J, van BuchemM A, van der GrondJ, RoosR A C, the TRACK-HD Investigator Group (2011a). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol, 258(3): 412–420
|
163 |
van den BogaardS J A, DumasE M, FerrariniL, MillesJ, van BuchemM A, van der GrondJ, RoosR A C (2011b). Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy—results from the TRACK-HD study. J Neurol Sci, 307(1–2): 60–68
|
164 |
VonsattelJ P, DiFigliaM (1998). Huntington disease. J Neuropathol Exp Neurol, 57(5): 369–384
|
165 |
VonsattelJ P, MyersR H, StevensT J, FerranteR J, BirdE D, RichardsonE P Jr (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol, 44(6): 559–577
|
166 |
VonsattelJ P G (2008). Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol, 115(1): 55–69
|
167 |
Waldron-RobyE, RatovitskiT, WangX, JiangM, WatkinE, ArbezN, GrahamR K, HaydenM R, HouZ, MoriS, SwingD, PletnikovM, DuanW, TessarolloL, RossC A (2012). Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci, 32(1): 183–193
|
168 |
WangL, LinF, WangJ, WuJ, HanR, ZhuL, ZhangG, DiFigliaM, QinZ (2012). Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai), 44(3): 249–258
|
169 |
WarbyS C, DotyC N, GrahamR K, ShivelyJ, SingarajaR R, HaydenM R (2009). Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci, 40(2): 121–127
|
170 |
WellingtonC L, EllerbyL M, LeavittB R, RoyS, NicholsonD W, HaydenM R (2003). Huntingtin proteolysis in Huntington disease. Clin Neurosci Res, 3: 129–139
|
171 |
WeydtP, PinedaV V, TorrenceA E, LibbyR T, SatterfieldT F, LazarowskiE R, GilbertM L, MortonG J, BammlerT K, StrandA D, CuiL, BeyerR P, EasleyC N, SmithA C, KraincD, LuquetS, SweetI R, SchwartzM W, La SpadaA R (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab, 4(5): 349–362
|
172 |
WhiteJ K, AuerbachW, DuyaoM P, VonsattelJ P, GusellaJ F, JoynerA L, MacDonaldM E (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet, 17(4): 404–410
|
173 |
WilburnB, RudnickiD D, ZhaoJ, WeitzT M, ChengY, GuX, GreinerE, ParkC S, WangN, SopherB L, La SpadaA R, OsmandA, MargolisR L, SunY E, YangX W (2011). An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron, 70(3): 427–440
|
174 |
WoodmanB, ButlerR, LandlesC, LuptonM K, TseJ, HocklyE, MoffittH, SathasivamK, BatesG P (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull, 72(2–3): 83–97
|
175 |
WuZ, PuigserverP, AnderssonU, ZhangC, AdelmantG, MoothaV, TroyA, CintiS, LowellB, ScarpullaR C, SpiegelmanB M (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1): 115–124
|
176 |
XieY, HaydenM R, XuB (2010). BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci, 30(44): 14708–14718
|
177 |
YanaiA, HuangK, KangR, SingarajaR R, ArstikaitisP, GanL, OrbanP C, MullardA, CowanC M, RaymondL A, DrisdelR C, GreenW N, RavikumarB, RubinszteinD C, El-HusseiniA, HaydenM R (2006). Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci, 9(6): 824–831
|
178 |
Yang,X. W., and Gray,M. (2011). Mouse Models for Validating Preclinical Candidates for Huntington’s Disease. Neurobiology of Huntington’s Disease: Applications to Drug Discovery.
|
179 |
ZeronM M, HanssonO, ChenN, WellingtonC L, LeavittB R, BrundinP, HaydenM R, RaymondL A (2002). Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 33(6): 849–860
|
180 |
Zheng,B., Liao,Z., Locascio,J. J., Lesniak,K. A., Roderick,S. S., Watt,M. L., Eklund,A. C., Zhang-James,Y., Kim,P. D., Hauser,M. A.,
|
181 |
ZuccatoC, CiammolaA, RigamontiD, LeavittB R, GoffredoD, ContiL, MacDonaldM E, FriedlanderR M, SilaniV, HaydenM R, TimmuskT, SipioneS, CattaneoE (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293(5529): 493–498
|
182 |
ZuccatoC, TartariM, CrottiA, GoffredoD, ValenzaM, ContiL, CataudellaT, LeavittB R, HaydenM R, TimmuskT, RigamontiD, CattaneoE (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet, 35(1): 76–83
|
183 |
ZuccatoC, ValenzaM, CattaneoE (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev, 90(3): 905–981
|
184 |
ZwillingD, HuangS Y, SathyasaikumarK V, NotarangeloF M, GuidettiP, WuH Q, LeeJ, TruongJ, Andrews-ZwillingY, HsiehE W, LouieJ Y, WuT, Scearce-LevieK, PatrickC, AdameA, GiorginiF, MoussaouiS, LaueG, RassoulpourA, FlikG, HuangY, MuchowskiJ M, MasliahE, SchwarczR, MuchowskiP J (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145(6): 863–874
|
/
〈 | 〉 |