REVIEW

Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease

  • Jeffrey P. CANTLE 1,4 ,
  • Xiao-Hong LU 1,2,3 ,
  • Xiaofeng GU 1,2,3 ,
  • X. William YANG , 1,2,3
Expand
  • 1. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
  • 2. Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
  • 3. Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
  • 4. Interdepartmental Program for Neuroscience, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA

Received date: 11 Jul 2012

Accepted date: 06 Aug 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Huntington’s disease (HD) is one of the most common dominantly-inherited neurodegenerative disorders and is caused by a CAG repeat expansion in the huntingtin gene. HD is characterized by selective degeneration of subpopulations of neurons in the brain, however the precise underlying mechanisms how a ubiquitously expressed disease protein could target specific types of neurons for degeneration remains a critical, yet unanswered question for HD and other major neurodegenerative disorders. In this review, we describe the expanding view of selective neuronal vulnerability in HD, based on recent neuropathological and neuroimaging studies. We will also summarize the systematic effort to define the cell types in which mutant Huntingtin expression is critical for pathogenesis of vulnerable neurons in the striatum and cortex. Finally, we will describe selected, emerging molecular mechanisms that are implicated in selective disease processes in HD. Together, the field has begun to appreciate the distinct molecular pathogenic roles of mutant huntingtin in different cell types that may contribute to the selective neuronal vulnerability, with dissection of such mechanisms likely to yield novel molecular targets for HD therapy.

Cite this article

Jeffrey P. CANTLE , Xiao-Hong LU , Xiaofeng GU , X. William YANG . Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Frontiers in Biology, 2012 , 7(5) : 459 -476 . DOI: 10.1007/s11515-012-1246-7

1
AikenC T, SteffanJ S, GuerreroC M, KhashwjiH, LukacsovichT, SimmonsD, PurcellJ M, MenhajiK, ZhuY Z, GreenK, LaferlaF, HuangL, ThompsonL M, MarshJ L (2009). Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem, 284(43): 29427–29436

PMID

2
AlbinR L, ReinerA, AndersonK D, DureL S 4th, HandelinB, BalfourR, WhetsellW O Jr, PenneyJ B, YoungA B (1992). Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol, 31(4): 425–430

PMID

3
AlbinR L, ReinerA, AndersonK D, PenneyJ B, YoungA B (1990). Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol, 27(4): 357–365

PMID

4
AltarC A, CaiN, BlivenT, JuhaszM, ConnerJ M, AchesonA L, LindsayR M, WiegandS J (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389(6653): 856–860

PMID

5
ArningL, SaftC, WieczorekS, AndrichJ, KrausP H, EpplenJ T (2007). NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet, 122(2): 175–182

PMID

6
ArreguiL, BenítezJ A, RazgadoL F, VergaraP, SegoviaJ (2011). Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol, 31(8): 1229–1243

PMID

7
AtwalR S, DesmondC R, CaronN, MaiuriT, XiaJ, SipioneS, TruantR (2011). Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol, 7(7): 453–460

PMID

8
AverbackP (1980). Histopathology of acute cell loss in Huntington’s chorea brain. J Pathol, 132(1): 55–61

PMID

9
AylwardE H, SparksB F, FieldK M, YallapragadaV, ShpritzB D, RosenblattA, BrandtJ, GourleyL M, LiangK, ZhouH, MargolisR L, RossC A (2004). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology, 63(1): 66–72

PMID

10
BealM F, KowallN W, EllisonD W, MazurekM F, SwartzK J, MartinJ B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321(6066): 168–171

PMID

11
BehrensP F, FranzP, WoodmanB, LindenbergK S, LandwehrmeyerG B (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain, 125(Pt 8): 1908–1922

PMID

12
BezprozvannyI, HaydenM R (2004). Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun, 322(4): 1310–1317

PMID

13
BezziP, GundersenV, GalbeteJ L, SeifertG, SteinhäuserC, PilatiE, VolterraA (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 7(6): 613–620

PMID

14
BiglanK M, RossC A, LangbehnD R, AylwardE H, StoutJ C, QuellerS, CarlozziN E, DuffK, BeglingerL J, PaulsenJ S, PREDICT-HD Investigators of the Huntington Study Group (2009). Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord, 24(12): 1763–1772

PMID

15
BradfordJ, ShinJ Y, RobertsM, WangC E, LiX J, LiS (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A, 106(52): 22480–22485

PMID

16
BradfordJ, ShinJ Y, RobertsM, WangC E, ShengG, LiS, LiX J (2010). Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem, 285(14): 10653–10661

PMID

17
BrownA M, RansomB R (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55(12): 1263–1271

PMID

18
BrownT B, BogushA I, EhrlichM E (2008). Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet, 17(20): 3095–3104

PMID

19
BrowneS E, BealM F (2004). The energetics of Huntington’s disease. Neurochem Res, 29(3): 531–546

PMID

20
BurnettC, ValentiniS, CabreiroF, GossM, SomogyváriM, PiperM D, HoddinottM, SutphinG L, LekoV, McElweeJ J, Vazquez-ManriqueR P, OrfilaA M, AckermanD, AuC, VintiG, RiesenM, HowardK, NeriC, BedalovA, KaeberleinM, SotiC, PartridgeL, GemsD (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 477(7365): 482–485

PMID

21
BydderG M, SteinerR E, YoungI R, HallA S, ThomasD J, MarshallJ, PallisC A, LeggN J (1982). Clinical NMR imaging of the brain: 140 cases. AJR Am J Roentgenol, 139(2): 215–236

PMID

22
CampesanS, GreenE W, BredaC, SathyasaikumarK V, MuchowskiP J, SchwarczR, KyriacouC P, GiorginiF (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol, 21(11): 961–966

PMID

23
CanalsJ M, PinedaJ R, Torres-PerazaJ F, BoschM, Martín-IbañezR, MuñozM T, MengodG, ErnforsP, AlberchJ (2004). Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci, 24(35): 7727–7739

PMID

24
ChaJ H J, FreyA S, AlsdorfS A, KernerJ A, KosinskiC M, MangiariniL, PenneyJ B Jr, DaviesS W, BatesG P, YoungA B (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci, 354(1386): 981–989

PMID

25
CheH V B, MetzgerS, PortalE, DeyleC, RiessO, NguyenH P (2011). Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener, 6(1): 1

PMID

26
ChoS R, BenraissA, ChmielnickiE, SamdaniA, EconomidesA, GoldmanS A (2007). Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest, 117(10): 2889–2902

PMID

27
ChoiY S, LeeB, ChoH Y, ReyesI B, PuX A, SaidoT C, HoytK R, ObrietanK (2009). CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis, 36(2): 259–268

PMID

28
ChouS Y, WengJ Y, LaiH L, LiaoF, SunS H, TuP H, DicksonD W, ChernY (2008). Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci, 28(13): 3277–3290

PMID

29
CrookZ R, HousmanD (2011). Huntington’s disease: can mice lead the way to treatment?Neuron, 69(3): 423–435

PMID

30
CudkowiczM, KowallN W (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol, 27(2): 200–204

PMID

31
CuiL, JeongH, BoroveckiF, ParkhurstC N, TaneseN, KraincD (2006). Transcriptional repression of PGC-1αby mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127(1): 59–69

PMID

32
DamianoM, GalvanL, DéglonN, BrouilletE (2010). Mitochondria in Huntington’s disease. Biochim Biophys Acta, 1802(1): 52–61

PMID

33
de la MonteS M, VonsattelJ P, RichardsonE P Jr, (1988). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol, 47(5): 516–525

PMID

34
Di PardoA, MaglioneV, AlpaughM, HorkeyM, AtwalR S, SassoneJ, CiammolaA, SteffanJ S, FouadK, TruantR, SipioneS (2012). Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A, 109(9): 3528–3533

PMID

35
DiFigliaM, SappE, ChaseK, SchwarzC, MeloniA, YoungC, MartinE, VonsattelJ P, CarrawayR, ReevesS A, et al (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14(5): 1075–1081

PMID

36
DiFigliaM, SappE, ChaseK O, DaviesS W, BatesG P, VonsattelJ P, AroninN (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277(5334): 1990–1993

PMID

37
DiFigliaM, Sena-EstevesM, ChaseK, SappE, PfisterE, SassM, YoderJ, ReevesP, PandeyR K, RajeevK G, ManoharanM, SahD W, ZamoreP D, AroninN (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A, 104(43): 17204–17209

PMID

38
DonmezG (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci,33(9): 494–501

DOI

39
DuffK, PaulsenJ S, BeglingerL J, LangbehnD R, WangC, StoutJ C, RossC A, AylwardE, CarlozziN E, QuellerS, and the Predict-HD Investigators of the Huntington Study Group (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci, 22(2): 196–207

PMID

40
DumasE M, van den BogaardS J A, RuberM E, ReilmanR R, StoutJ C, CraufurdD, HicksS L, KennardC, TabriziS J, van BuchemM A, van der GrondJ, RoosR A (2012). Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp, 33(1): 203–212

PMID

41
DuyaoM P, AuerbachA B, RyanA, PersichettiF, BarnesG T, McNeilS M, GeP, VonsattelJ P, GusellaJ F, JoynerA L, (1995). Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science, 269(5222): 407–410

PMID

42
EhrnhoeferD E, SuttonL, HaydenM R(2011). Small Changes, Big Impact: Posttranslational Modifications and Function of Huntingtin in Huntington Disease. Neuroscientist, 17(5): 475–492

43
FaideauM, KimJ, CormierK, GilmoreR, WelchM, AureganG, DufourN, GuillermierM, BrouilletE, HantrayeP, DéglonN, FerranteR J, BonventoG (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet, 19(15): 3053–3067

PMID

44
FerranteR J, KowallN W, BealM F, MartinJ B, BirdE D, RichardsonE P Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol, 46(1): 12–27

PMID

45
FerranteR J, KowallN W, BealM F, RichardsonE P Jr, BirdE D, MartinJ B (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230(4725): 561–563

PMID

46
FiaccoT A, McCarthyK D (2004). Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci, 24(3): 722–732

PMID

47
FuscoF R, ChenQ, LamoreauxW J, Figueredo-CardenasG, JiaoY, CoffmanJ A, SurmeierD J, HonigM G, CarlockL R, ReinerA (1999). Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci, 19(4): 1189–1202

PMID

48
GafniJ, PapanikolaouT, DegiacomoF, HolcombJ, ChenS, MenalledL, KudwaA, FitzpatrickJ, MillerS, RambozS, TuunanenP I, LehtimäkiK K, YangX W, ParkL, KwakS, HowlandD, ParkH, EllerbyL M (2012). Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci, 32(22): 7454–7465

PMID

49
GauthierL R, CharrinB C, Borrell-PagèsM, DompierreJ P, RangoneH, CordelièresF P, De MeyJ, MacDonaldM E, LessmannV, HumbertS, SaudouF (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118(1): 127–138

PMID

50
GlassC K, SaijoK, WinnerB, MarchettoM C, GageF H (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6): 918–934

PMID

51
GorskiJ A, TalleyT, QiuM, PuellesL, RubensteinJ L R, JonesK R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci, 22(15): 6309–6314

PMID

52
GrahamR K, DengY, CarrollJ, VaidK, CowanC, PouladiM A, MetzlerM, BissadaN, WangL, FaullR L M, GrayM, YangX W, RaymondL A, HaydenM R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci, 30(45): 15019–15029

PMID

53
GrahamR K, DengY, SlowE J, HaighB, BissadaN, LuG, PearsonJ, ShehadehJ, BertramL, MurphyZ, WarbyS C, DotyC N, RoyS, WellingtonC L, LeavittB R, RaymondL A, NicholsonD W, HaydenM R (2006). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 125(6): 1179–1191

PMID

54
GrayM, ShirasakiD I, CepedaC, AndréV M, WilburnB, LuX H, TaoJ, YamazakiI, LiS H, SunY E, LiX J, LevineM S, YangX W (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci, 28(24): 6182–6195

PMID

55
GraybielA M (2000). The basal ganglia. Curr Biol, 10(14): R509–R511

PMID

56
GreinerE R, YangX W (2011). Huntington’s disease: flipping a switch on huntingtin. Nat Chem Biol, 7(7): 412–414

PMID

57
GuX, AndréV M, CepedaC, LiS H, LiX J, LevineM S, YangX W (2007). Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener, 2: 8

PMID

58
GuX, GreinerE R, MishraR, KodaliR, OsmandA, FinkbeinerS, SteffanJ S, ThompsonL M, WetzelR, YangX W (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron, 64(6): 828–840

PMID

59
GuX, LiC, WeiW, LoV, GongS, LiS H, IwasatoT, ItoharaS, LiX J, ModyI, HeintzN, YangX W (2005). Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron, 46(3): 433–444

PMID

60
GuarenteL (2007). Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol, 72: 483–488

PMID

61
GuidettiP, BatesG P, GrahamR K, HaydenM R, LeavittB R, MacDonaldM E, SlowE J, WheelerV C, WoodmanB, SchwarczR (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 23(1): 190–197

PMID

62
GutekunstC A, LiS H, YiH, MulroyJ S, KuemmerleS, JonesR, RyeD, FerranteR J, HerschS M, LiX J (1999). Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci, 19(7): 2522–2534

PMID

63
HardinghamG E, BadingH (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci, 26(2): 81–89

PMID

64
HardinghamG E, BadingH(2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 682(11): 1–15

65
HarperS Q, StaberP D, HeX, EliasonS L, MartinsI H, MaoQ, YangL, KotinR M, PaulsonH L, DavidsonB L (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A, 102(16): 5820–5825

PMID

66
HarrisG J, PearlsonG D, PeyserC E, AylwardE H, RobertsJ, BartaP E, ChaseG A, FolsteinS E (1992). Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol, 31(1): 69–75

PMID

67
HarrisonL M (2012). Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology. Cell Mol Neurobiol, 32(6): 907–918

68
HedreenJ C, PeyserC E, FolsteinS E, RossC A (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett, 133(2): 257–261

PMID

69
HengM Y, DetloffP J, AlbinR L (2008). Rodent genetic models of Huntington disease. Neurobiol Dis, 32(1): 1–9

PMID

70
HengM Y, DetloffP J, WangP L, TsienJ Z, AlbinR L (2009). In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci, 29(10): 3200–3205

PMID

71
HodgsonJ G, AgopyanN, GutekunstC A, LeavittB R, LePianeF, SingarajaR, SmithD J, BissadaN, McCutcheonK, NasirJ, JamotL, LiX J, StevensM E, RosemondE, RoderJ C, PhillipsA G, RubinE M, HerschS M, HaydenM R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1): 181–192

PMID

72
HolmesS E, O’HearnE, RosenblattA, CallahanC, HwangH S, Ingersoll-AshworthR G, FleisherA, StevaninG, BriceA, PotterN T, RossC A, MargolisR L (2001). A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet, 29(4): 377–378

PMID

73
HoutkooperR H, PirinenE, AuwerxJ (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13(4): 225–238

PMID

74
HultS, SoyluR, BjörklundT, BelgardtB F, MauerJ, BrüningJ C, KirikD, PetersénÅ (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab, 13(4): 428–439

PMID

75
HumbertS, BrysonE A, CordelièresF P, ConnorsN C, DattaS R, FinkbeinerS, GreenbergM E, SaudouF (2002). The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell, 2(6): 831–837

PMID

76
IwasatoT, DatwaniA, WolfA M, NishiyamaH, TaguchiY, TonegawaS, KnöpfelT, ErzurumluR S, ItoharaS (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731

PMID

77
JauchD, UrbańskaE M, GuidettiP, BirdE D, VonsattelJ P, WhetsellW O Jr, SchwarczR (1995). Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci, 130(1): 39–47

PMID

78
JeongH, CohenD E, CuiL, SupinskiA, SavasJ N, MazzulliJ R, YatesJ R 3rd, BordoneL, GuarenteL, KraincD (2012). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med, 18(1): 159–165

PMID

79
JeongH, ThenF, MeliaT J Jr, MazzulliJ R, CuiL, SavasJ N, VoisineC, PaganettiP, TaneseN, HartA C, YamamotoA, KraincD (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72

PMID

80
JerniganT L, SalmonD P, ButtersN, HesselinkJ R (1991). Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry, 29(1): 68–81

PMID

81
JiangM, WangJ, FuJ, DuL, JeongH, WestT, XiangL, PengQ, HouZ, CaiH, SeredeninaT, ArbezN, ZhuS, SommersK, QianJ, ZhangJ, MoriS, YangX W, TamashiroK L, AjaS, MoranT H, Luthi-CarterR, MartinB, MaudsleyS, MattsonM P, CichewiczR H, RossC A, HoltzmanD M, KraincD, DuanW (2012). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med, 18(1): 153–158

PMID

82
JohriA, CalingasanN Y, HennesseyT M, SharmaA, YangL, WilleE, ChandraA, BealM F (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet, 21(5): 1124–1137

PMID

83
KimJ, MoodyJ P, EdgerlyC K, BordiukO L, CormierK, SmithK, BealM F, FerranteR J (2010). Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet, 19(20): 3919–3935

PMID

84
KitaH, KitaiS T (1988). Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res, 447(2): 346–352

PMID

85
KlöppelS, DraganskiB, GoldingC V, ChuC, NagyZ, CookP A, HicksS L, KennardC, AlexanderD C, ParkerG J M, TabriziS J, FrackowiakR S (2008). White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain, 131(Pt 1): 196–204

PMID

86
KolodziejL R, PaleologE M, WilliamsR O (2011). Kynurenine metabolism in health and disease. Amino Acids, 41(5): 1173–1183

PMID

87
KordasiewiczH B, StanekL M, WancewiczE V, MazurC, McAlonisM M, PytelK A, ArtatesJ W, WeissA, ChengS H, ShihabuddinL S, HungG, BennettC F, ClevelandD W (2012). Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron, 74(6): 1031–1044

PMID

88
KovácsK A, SteulletP, SteinmannM, DoK Q, MagistrettiP J, HalfonO, CardinauxJ R (2007). TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A, 104(11): 4700–4705

PMID

89
LangeH, ThörnerG, HopfA, SchröderK F (1976). Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci, 28(4): 401–425

PMID

90
LevineM S, KlapsteinG J, KoppelA, GruenE, CepedaC, VargasM E, JokelE S, CarpenterE M, ZanjaniH, HurstR S, EfstratiadisA, ZeitlinS, ChesseletM F (1999). Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res, 58(4): 515–532

PMID

91
LiH, LiS H, JohnstonH, ShelbourneP F, LiX J (2000). Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet, 25(4): 385–389

PMID

92
LiL, FanM, IctonC D, ChenN, LeavittB R, HaydenM R, MurphyT H, RaymondL A (2003). Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging, 24(8): 1113–1121

PMID

93
LiS, ZhangC, TakemoriH, ZhouY, XiongZ Q (2009). TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci, 29(8): 2334–2343

PMID

94
LiévensJ C, WoodmanB, MahalA, Spasic-BoscovicO, SamuelD, Kerkerian-Le GoffL, BatesG P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis, 8(5): 807–821

PMID

95
LinJ, WuP H, TarrP T, LindenbergK S, St-PierreJ, ZhangC Y, MoothaV K, JägerS, ViannaC R, ReznickR M, CuiL, ManieriM, DonovanM X, WuZ, CooperM P, FanM C, RohasL M, ZavackiA M, CintiS, ShulmanG I, LowellB B, KraincD, SpiegelmanB M (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119(1): 121–135

PMID

96
LinJ, YangR, TarrP T, WuP H, HandschinC, LiS, YangW, PeiL, UldryM, TontonozP, NewgardC B, SpiegelmanB M (2005). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell, 120(2): 261–273

PMID

97
LuX H, YangX W (2012). “Huntingtin Holiday”: Progress toward an Antisense Therapy for Huntington’s Disease. Neuron, 74(6): 964–966

PMID

98
LunkesA, LindenbergK S, Ben-HaïemL, WeberC, DevysD, LandwehrmeyerG B, MandelJ L, TrottierY (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell, 10(2): 259–269

PMID

99
Luthi-CarterR, StrandA, PetersN L, SolanoS M, HollingsworthZ R, MenonA S, FreyA S, SpektorB S, PenneyE B, SchillingG, RossC A, BorcheltD R, TapscottS J, YoungA B, ChaJ H, OlsonJ M (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet, 9(9): 1259–1271

PMID

100
MacdonaldV, HallidayG (2002). Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis, 10(3): 378–386

PMID

101
MangiariniL, SathasivamK, SellerM, CozensB, HarperA, HetheringtonC, LawtonM, TrottierY, LehrachH, DaviesS W, BatesG P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3): 493–506

PMID

102
MannD M, OliverR, SnowdenJ S (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol, 85(5): 553–559

PMID

103
MantamadiotisT, LembergerT, BleckmannS C, KernH, KretzO, Martin VillalbaA, TroncheF, KellendonkC, GauD, KapfhammerJ, OttoC, SchmidW, SchützG (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat Genet, 31(1): 47–54

PMID

104
MattssonB, GottfriesC G, RoosB E, WinbladB (1974). Huntington’s chorea: pathology and brain amines. Acta Psychiatr Scand Suppl, 255: 269–277

PMID

105
McBrideJ L, BoudreauR L, HarperS Q, StaberP D, MonteysA M, MartinsI, GilmoreB L, BursteinH, PelusoR W, PoliskyB, CarterB J, DavidsonB L (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A, 105(15): 5868–5873

PMID

106
McGillJ K, BealM F (2006). PGC-1α, a new therapeutic target in Huntington’s disease?Cell, 127(3): 465–468

PMID

107
MenalledL, El-KhodorB F, PatryM, Suárez-FariñasM, OrensteinS J, ZahaskyB, LeahyC, WheelerV, YangX W, MacDonaldM E, MortonA J, BatesG, LeedsJ, ParkL, HowlandD, SignerE, TobinA, BrunnerD (2009). Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis, 35(3): 319–336

PMID

108
MenalledL B, SisonJ D, DragatsisI, ZeitlinS, ChesseletM F O (2003). Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol, 465(1): 11–26

PMID

109
MetzlerM, GanL, MazareiG, GrahamR K, LiuL, BissadaN, LuG, LeavittB R, HaydenM R (2010). Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci, 30(43): 14318–14329

PMID

110
MillerB R, DornerJ L, ShouM, SariY, BartonS J, SengelaubD R, KennedyR T, RebecG V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 153(1): 329–337

PMID

111
MillerJ P, HolcombJ, Al-RamahiI, de HaroM, GafniJ, ZhangN, KimE, SanhuezaM, TorcassiC, KwakS, BotasJ, HughesR E, EllerbyL M (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron, 67(2): 199–212

PMID

112
MilnerwoodA J, CummingsD M, DalléracG M, BrownJ Y, VatsavayaiS C, HirstM C, RezaieP, MurphyK P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet, 15(10): 1690–1703

PMID

113
MilnerwoodA J, GladdingC M, PouladiM A, KaufmanA M, HinesR M, BoydJ D, KoR W Y, VasutaO C, GrahamR K, HaydenM R, MurphyT H, RaymondL A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 65(2): 178–190

PMID

114
MilnerwoodA J, RaymondL A (2010). Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci, 33(11): 513–523

PMID

115
MyersR H, VonsattelJ P, PaskevichP A, KielyD K, StevensT J, CupplesL A, RichardsonE P Jr, BirdE D (1991). Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol, 50(6): 729–742

PMID

116
OkamotoS I, PouladiM A, TalantovaM, YaoD, XiaP, EhrnhoeferD E, ZaidiR, ClementeA, KaulM, GrahamR K, ZhangD, Vincent ChenH S, TongG, HaydenM R, LiptonS A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med,

DOI

117
OrrH T, ZoghbiH Y (2007). Trinucleotide repeat disorders. Annu Rev Neurosci, 30: 575–621

PMID

118
ParkerJ A, ArangoM, AbderrahmaneS, LambertE, TouretteC, CatoireH, NériC (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet, 37(4): 349–350

PMID

119
PaulsenJ S, HaydenM, StoutJ C, LangbehnD R, AylwardE, RossC A, GuttmanM, NanceM, KieburtzK, OakesD, ShoulsonI, KaysonE, JohnsonS, PenzinerE, Predict-HD Investigators of the Huntington Study Group (2006). Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol, 63(6): 883–890

PMID

120
PaulsenJ S, LangbehnD R, StoutJ C, AylwardE, RossC A, NanceM, GuttmanM, JohnsonS, MacDonaldM, BeglingerL J, DuffK, KaysonE, BiglanK, ShoulsonI, OakesD, HaydenM, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008). Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry, 79(8): 874–880

PMID

121
PaulsenJ S, WangC, DuffK, BarkerR, NanceM, BeglingerL, MoserD, WilliamsJ K, SimpsonS, LangbehnD, van KammenD P, and the PREDICT-HD Investigators of the Huntington Study Group (2010). Challenges assessing clinical endpoints in early Huntington disease. Mov Disord, 25(15): 2595–2603

PMID

122
PetersénÅ, BjörkqvistM (2006). Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci, 24(4): 961–967

PMID

123
PfriegerF W, UngererN (2011). Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res, 50(4): 357–371

PMID

124
Ramos,E. M., Latourelle,J. C., Lee,J.-H., Gillis,T., Mysore,J. S., Squitieri,F., Pardo,A., Donato,S., Hayden,M. R., Morrison,P. J., . (2012). Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum. Genet.

125
RatovitskiT, GucekM, JiangH, ChighladzeE, WaldronE, D’AmbolaJ, HouZ, LiangY, PoirierM A, HirschhornR R, GrahamR, HaydenM R, ColeR N, RossC A (2009). Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem, 284(16): 10855–10867

PMID

126
RaymondL A, AndréV M, CepedaC, GladdingC M, MilnerwoodA J, LevineM S (2011). Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience, 198: 252–273

PMID

127
ReadingS A J, YassaM A, BakkerA, DziornyA C, GourleyL M, YallapragadaV, RosenblattA, MargolisR L, AylwardE H, BrandtJ, MoriS, van ZijlP, BassettS S, RossC A (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res, 140(1): 55–62

PMID

128
ReinerA, AlbinR L, AndersonK D, D’AmatoC J, PenneyJ B, YoungA B (1988). Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A, 85(15): 5733–5737

PMID

129
ReinerA, DragatsisI, ZeitlinS, GoldowitzD (2003). Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol, 28(3): 259–276

PMID

130
RoosR A, BotsG T, HermansJ (1986). Quantitative analysis of morphological features in Huntington’s disease. Acta Neurol Scand, 73(2): 131–135

PMID

131
RosasH D, FeiginA S, HerschS M (2004). Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx, 1(2): 263–272

PMID

132
RosasH D, KoroshetzW J, ChenY I, SkeuseC, VangelM, CudkowiczM E, CaplanK, MarekK, SeidmanL J, MakrisN, JenkinsB G, GoldsteinJ M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10): 1615–1620

PMID

133
RosasH D, LeeS Y, BenderA C, ZaletaA K, VangelM, YuP, FischlB, PappuV, OnoratoC, ChaJ H, SalatD H, HerschS M (2010). Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4): 2995–3004

PMID

134
RosasH D, SalatD H, LeeS Y, ZaletaA K, HeveloneN, HerschS M (2008). Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci, 1147: 196–<OrgAddress>205</OrgAddress>

PMID

135
RosasH D, TuchD S, HeveloneN D, ZaletaA K, VangelM, HerschS M, SalatD H (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord, 21(9): 1317–1325

PMID

136
RossC A, TabriziS J (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol, 10(1): 83–98

PMID

137
RunneH, RégulierE, KuhnA, ZalaD, GokceO, PerrinV, SickB, AebischerP, DéglonN, Luthi-CarterR (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci, 28(39): 9723–9731

PMID

138
SavoiardoM, StradaL, OlivaD, GirottiF, D’IncertiL (1991). Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry, 54(10): 888–891

PMID

139
SchillingG, BecherM W, SharpA H, JinnahH A, DuanK, KotzukJ A, SluntH H, RatovitskiT, CooperJ K, JenkinsN A, CopelandN G, PriceD L, RossC A, BorcheltD R (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet, 8(3): 397–407

PMID

140
SchwarczR, BennettJ P Jr, CoyleJ T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem, 28(4): 867–869

PMID

141
SchwarczR, GuidettiP, SathyasaikumarK V, MuchowskiP J (2010). Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol, 90(2): 230–245

PMID

142
SharmaP, SavyL, BrittonJ, TaylorR, HowickA, PattonM (1996). Huntington’s disease: a molecular genetic and CT comparison. J Neurol Neurosurg Psychiatry, 60(2): 206–208

PMID

143
ShaywitzA J, GreenbergM E (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 68: 821–861

PMID

144
ShinJ Y, FangZ H, YuZ X, WangC E, LiS H, LiX J (2005). Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol, 171(6): 1001–1012

PMID

145
SimmonsD A, MehtaR A, LauterbornJ C, GallC M, LynchG (2011). Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice. Neurobiol Dis, 41(2): 436–444

PMID

146
SimmonsD A, RexC S, PalmerL, PandyarajanV, FedulovV, GallC M, LynchG (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A, 106(12): 4906–4911

PMID

147
SlowE J, van RaamsdonkJ, RogersD, ColemanS H, GrahamR K, DengY, OhR, BissadaN, HossainS M, YangY Z, LiX J, SimpsonE M, GutekunstC A, LeavittB R, HaydenM R (2003). Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet, 12(13): 1555–1567

PMID

148
SpampanatoJ, GuX, YangX W, ModyI (2008). Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience, 157(3): 606–620

PMID

149
SteffanJ S, AgrawalN, PallosJ, RockabrandE, TrotmanL C, SlepkoN, IllesK, LukacsovichT, ZhuY Z, CattaneoE, PandolfiP P, ThompsonL M, MarshJ L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104

PMID

150
StrandA D, BaquetZ C, AragakiA K, HolmansP, YangL, ClerenC, BealM F, JonesL, KooperbergC, OlsonJ M, JonesK R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci, 27(43): 11758–11768

PMID

151
SubramaniamS, SixtK M, BarrowR, SnyderS H (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324(5932): 1327–1330

PMID

152
SubramaniamS, SnyderS H (2011). Huntington’s disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology, 60(7–8): 1187–1192

PMID

153
TabriziS J, LangbehnD R, LeavittB R, RoosR A, DurrA, CraufurdD, KennardC, HicksS L, FoxN C, ScahillR I, BorowskyB, TobinA J, RosasH D, JohnsonH, ReilmannR, LandwehrmeyerB, StoutJ C, TRACK-HD investigators (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol, 8(9): 791–801

PMID

154
TabriziS J, ReilmannR, RoosR A C, DurrA, LeavittB, OwenG, JonesR, JohnsonH, CraufurdD, HicksS L, KennardC, LandwehrmeyerB, StoutJ C, BorowskyB, ScahillR I, FrostC, LangbehnD R, TRACK-HD investigators (2012). Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol, 11(1): 42–53

PMID

155
Tallaksen-GreeneS J, JaniszewskaA, BentonK, RuprechtL, AlbinR L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol, 225(2): 402–407

PMID

156
TebbenkampA T N, GreenC, XuG, Denovan-WrightE M, RisingA C, FromholtS E, BrownH H, SwingD, MandelR J, TessarolloL, BorcheltD R (2011). Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet, 20(14): 2770–2782

PMID

157
The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983

PMID

158
ThomasE A, CoppolaG, TangB, KuhnA, KimS, GeschwindD H, BrownT B, Luthi-Carter R, EhrlichM E (2011). In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet, 20(6): 1049–1060

PMID

159
ThompsonL M, AikenC T, KaltenbachL S, AgrawalN, IllesK, KhoshnanA, Martinez-VincenteM, ArrasateM, O’RourkeJ G, KhashwjiH, LukacsovichT, ZhuY Z, LauA L, MasseyA, HaydenM R, ZeitlinS O, FinkbeinerS, GreenK N, LaFerlaF M, BatesG, HuangL, PattersonP H, LoD C, CuervoA M, MarshJ L, SteffanJ S (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol, 187(7): 1083–1099

PMID

160
TsunemiT, AsheT D, MorrisonB E, SorianoK R, AuJ, RoqueR A V, LazarowskiE R, DamianV A, MasliahE, La SpadaA R (2012). PGC-1 rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med, 142(4): 142ra97

161
ValenzaM, LeoniV, KarasinskaJ M, PetriccaL, FanJ, CarrollJ, PouladiM A, FossaleE, NguyenH P, RiessO, MacDonaldM, WellingtonC, DiDonatoS, HaydenM, CattaneoE (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci, 30(32): 10844–10850

PMID

162
van den BogaardS J A, DumasE M, AcharyaT P, JohnsonH, LangbehnD R, ScahillR I, TabriziS J, van BuchemM A, van der GrondJ, RoosR A C, the TRACK-HD Investigator Group (2011a). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol, 258(3): 412–420

PMID

163
van den BogaardS J A, DumasE M, FerrariniL, MillesJ, van BuchemM A, van der GrondJ, RoosR A C (2011b). Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy—results from the TRACK-HD study. J Neurol Sci, 307(1–2): 60–68

PMID

164
VonsattelJ P, DiFigliaM (1998). Huntington disease. J Neuropathol Exp Neurol, 57(5): 369–384

PMID

165
VonsattelJ P, MyersR H, StevensT J, FerranteR J, BirdE D, RichardsonE P Jr (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol, 44(6): 559–577

PMID

166
VonsattelJ P G (2008). Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol, 115(1): 55–69

PMID

167
Waldron-RobyE, RatovitskiT, WangX, JiangM, WatkinE, ArbezN, GrahamR K, HaydenM R, HouZ, MoriS, SwingD, PletnikovM, DuanW, TessarolloL, RossC A (2012). Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci, 32(1): 183–193

PMID

168
WangL, LinF, WangJ, WuJ, HanR, ZhuL, ZhangG, DiFigliaM, QinZ (2012). Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai), 44(3): 249–258

PMID

169
WarbyS C, DotyC N, GrahamR K, ShivelyJ, SingarajaR R, HaydenM R (2009). Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci, 40(2): 121–127

PMID

170
WellingtonC L, EllerbyL M, LeavittB R, RoyS, NicholsonD W, HaydenM R (2003). Huntingtin proteolysis in Huntington disease. Clin Neurosci Res, 3: 129–139

171
WeydtP, PinedaV V, TorrenceA E, LibbyR T, SatterfieldT F, LazarowskiE R, GilbertM L, MortonG J, BammlerT K, StrandA D, CuiL, BeyerR P, EasleyC N, SmithA C, KraincD, LuquetS, SweetI R, SchwartzM W, La SpadaA R (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab, 4(5): 349–362

PMID

172
WhiteJ K, AuerbachW, DuyaoM P, VonsattelJ P, GusellaJ F, JoynerA L, MacDonaldM E (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet, 17(4): 404–410

PMID

173
WilburnB, RudnickiD D, ZhaoJ, WeitzT M, ChengY, GuX, GreinerE, ParkC S, WangN, SopherB L, La SpadaA R, OsmandA, MargolisR L, SunY E, YangX W (2011). An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron, 70(3): 427–440

PMID

174
WoodmanB, ButlerR, LandlesC, LuptonM K, TseJ, HocklyE, MoffittH, SathasivamK, BatesG P (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull, 72(2–3): 83–97

PMID

175
WuZ, PuigserverP, AnderssonU, ZhangC, AdelmantG, MoothaV, TroyA, CintiS, LowellB, ScarpullaR C, SpiegelmanB M (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1): 115–124

PMID

176
XieY, HaydenM R, XuB (2010). BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci, 30(44): 14708–14718

PMID

177
YanaiA, HuangK, KangR, SingarajaR R, ArstikaitisP, GanL, OrbanP C, MullardA, CowanC M, RaymondL A, DrisdelR C, GreenW N, RavikumarB, RubinszteinD C, El-HusseiniA, HaydenM R (2006). Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci, 9(6): 824–831

PMID

178
Yang,X. W., and Gray,M. (2011). Mouse Models for Validating Preclinical Candidates for Huntington’s Disease. Neurobiology of Huntington’s Disease: Applications to Drug Discovery.

179
ZeronM M, HanssonO, ChenN, WellingtonC L, LeavittB R, BrundinP, HaydenM R, RaymondL A (2002). Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 33(6): 849–860

PMID

180
Zheng,B., Liao,Z., Locascio,J. J., Lesniak,K. A., Roderick,S. S., Watt,M. L., Eklund,A. C., Zhang-James,Y., Kim,P. D., Hauser,M. A., . (2010). PGC-1, A Potential Therapeutic Target for Early Intervention in Parkinson's Disease. Sci. Transl. Med. 2, 52ra73–52ra73.

181
ZuccatoC, CiammolaA, RigamontiD, LeavittB R, GoffredoD, ContiL, MacDonaldM E, FriedlanderR M, SilaniV, HaydenM R, TimmuskT, SipioneS, CattaneoE (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293(5529): 493–498

PMID

182
ZuccatoC, TartariM, CrottiA, GoffredoD, ValenzaM, ContiL, CataudellaT, LeavittB R, HaydenM R, TimmuskT, RigamontiD, CattaneoE (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet, 35(1): 76–83

PMID

183
ZuccatoC, ValenzaM, CattaneoE (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev, 90(3): 905–981

PMID

184
ZwillingD, HuangS Y, SathyasaikumarK V, NotarangeloF M, GuidettiP, WuH Q, LeeJ, TruongJ, Andrews-ZwillingY, HsiehE W, LouieJ Y, WuT, Scearce-LevieK, PatrickC, AdameA, GiorginiF, MoussaouiS, LaueG, RassoulpourA, FlikG, HuangY, MuchowskiJ M, MasliahE, SchwarczR, MuchowskiP J (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145(6): 863–874

PMID

Outlines

/