Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease

Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG

PDF(374 KB)
PDF(374 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 459-476. DOI: 10.1007/s11515-012-1246-7
REVIEW
REVIEW

Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease

Author information +
History +

Abstract

Huntington’s disease (HD) is one of the most common dominantly-inherited neurodegenerative disorders and is caused by a CAG repeat expansion in the huntingtin gene. HD is characterized by selective degeneration of subpopulations of neurons in the brain, however the precise underlying mechanisms how a ubiquitously expressed disease protein could target specific types of neurons for degeneration remains a critical, yet unanswered question for HD and other major neurodegenerative disorders. In this review, we describe the expanding view of selective neuronal vulnerability in HD, based on recent neuropathological and neuroimaging studies. We will also summarize the systematic effort to define the cell types in which mutant Huntingtin expression is critical for pathogenesis of vulnerable neurons in the striatum and cortex. Finally, we will describe selected, emerging molecular mechanisms that are implicated in selective disease processes in HD. Together, the field has begun to appreciate the distinct molecular pathogenic roles of mutant huntingtin in different cell types that may contribute to the selective neuronal vulnerability, with dissection of such mechanisms likely to yield novel molecular targets for HD therapy.

Keywords

Huntington's disease / neurodegeneration / selective neuronal vulnerability / cortex / striatum / conditional mouse model / cell-autonomous toxicity / pathological cell-cell interaction / pathogenesis / therapeutic targets

Cite this article

Download citation ▾
Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease. Front Biol, 2012, 7(5): 459‒476 https://doi.org/10.1007/s11515-012-1246-7

References

[1]
AikenC T, SteffanJ S, GuerreroC M, KhashwjiH, LukacsovichT, SimmonsD, PurcellJ M, MenhajiK, ZhuY Z, GreenK, LaferlaF, HuangL, ThompsonL M, MarshJ L (2009). Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem, 284(43): 29427–29436
Pubmed
[2]
AlbinR L, ReinerA, AndersonK D, DureL S 4th, HandelinB, BalfourR, WhetsellW O Jr, PenneyJ B, YoungA B (1992). Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol, 31(4): 425–430
Pubmed
[3]
AlbinR L, ReinerA, AndersonK D, PenneyJ B, YoungA B (1990). Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol, 27(4): 357–365
Pubmed
[4]
AltarC A, CaiN, BlivenT, JuhaszM, ConnerJ M, AchesonA L, LindsayR M, WiegandS J (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389(6653): 856–860
Pubmed
[5]
ArningL, SaftC, WieczorekS, AndrichJ, KrausP H, EpplenJ T (2007). NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet, 122(2): 175–182
Pubmed
[6]
ArreguiL, BenítezJ A, RazgadoL F, VergaraP, SegoviaJ (2011). Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol, 31(8): 1229–1243
Pubmed
[7]
AtwalR S, DesmondC R, CaronN, MaiuriT, XiaJ, SipioneS, TruantR (2011). Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol, 7(7): 453–460
Pubmed
[8]
AverbackP (1980). Histopathology of acute cell loss in Huntington’s chorea brain. J Pathol, 132(1): 55–61
Pubmed
[9]
AylwardE H, SparksB F, FieldK M, YallapragadaV, ShpritzB D, RosenblattA, BrandtJ, GourleyL M, LiangK, ZhouH, MargolisR L, RossC A (2004). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology, 63(1): 66–72
Pubmed
[10]
BealM F, KowallN W, EllisonD W, MazurekM F, SwartzK J, MartinJ B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321(6066): 168–171
Pubmed
[11]
BehrensP F, FranzP, WoodmanB, LindenbergK S, LandwehrmeyerG B (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain, 125(Pt 8): 1908–1922
Pubmed
[12]
BezprozvannyI, HaydenM R (2004). Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun, 322(4): 1310–1317
Pubmed
[13]
BezziP, GundersenV, GalbeteJ L, SeifertG, SteinhäuserC, PilatiE, VolterraA (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci, 7(6): 613–620
Pubmed
[14]
BiglanK M, RossC A, LangbehnD R, AylwardE H, StoutJ C, QuellerS, CarlozziN E, DuffK, BeglingerL J, PaulsenJ S, PREDICT-HD Investigators of the Huntington Study Group (2009). Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord, 24(12): 1763–1772
Pubmed
[15]
BradfordJ, ShinJ Y, RobertsM, WangC E, LiX J, LiS (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A, 106(52): 22480–22485
Pubmed
[16]
BradfordJ, ShinJ Y, RobertsM, WangC E, ShengG, LiS, LiX J (2010). Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem, 285(14): 10653–10661
Pubmed
[17]
BrownA M, RansomB R (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55(12): 1263–1271
Pubmed
[18]
BrownT B, BogushA I, EhrlichM E (2008). Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet, 17(20): 3095–3104
Pubmed
[19]
BrowneS E, BealM F (2004). The energetics of Huntington’s disease. Neurochem Res, 29(3): 531–546
Pubmed
[20]
BurnettC, ValentiniS, CabreiroF, GossM, SomogyváriM, PiperM D, HoddinottM, SutphinG L, LekoV, McElweeJ J, Vazquez-ManriqueR P, OrfilaA M, AckermanD, AuC, VintiG, RiesenM, HowardK, NeriC, BedalovA, KaeberleinM, SotiC, PartridgeL, GemsD (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 477(7365): 482–485
Pubmed
[21]
BydderG M, SteinerR E, YoungI R, HallA S, ThomasD J, MarshallJ, PallisC A, LeggN J (1982). Clinical NMR imaging of the brain: 140 cases. AJR Am J Roentgenol, 139(2): 215–236
Pubmed
[22]
CampesanS, GreenE W, BredaC, SathyasaikumarK V, MuchowskiP J, SchwarczR, KyriacouC P, GiorginiF (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol, 21(11): 961–966
Pubmed
[23]
CanalsJ M, PinedaJ R, Torres-PerazaJ F, BoschM, Martín-IbañezR, MuñozM T, MengodG, ErnforsP, AlberchJ (2004). Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci, 24(35): 7727–7739
Pubmed
[24]
ChaJ H J, FreyA S, AlsdorfS A, KernerJ A, KosinskiC M, MangiariniL, PenneyJ B Jr, DaviesS W, BatesG P, YoungA B (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci, 354(1386): 981–989
Pubmed
[25]
CheH V B, MetzgerS, PortalE, DeyleC, RiessO, NguyenH P (2011). Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener, 6(1): 1
Pubmed
[26]
ChoS R, BenraissA, ChmielnickiE, SamdaniA, EconomidesA, GoldmanS A (2007). Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest, 117(10): 2889–2902
Pubmed
[27]
ChoiY S, LeeB, ChoH Y, ReyesI B, PuX A, SaidoT C, HoytK R, ObrietanK (2009). CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis, 36(2): 259–268
Pubmed
[28]
ChouS Y, WengJ Y, LaiH L, LiaoF, SunS H, TuP H, DicksonD W, ChernY (2008). Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci, 28(13): 3277–3290
Pubmed
[29]
CrookZ R, HousmanD (2011). Huntington’s disease: can mice lead the way to treatment?Neuron, 69(3): 423–435
Pubmed
[30]
CudkowiczM, KowallN W (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol, 27(2): 200–204
Pubmed
[31]
CuiL, JeongH, BoroveckiF, ParkhurstC N, TaneseN, KraincD (2006). Transcriptional repression of PGC-1αby mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127(1): 59–69
Pubmed
[32]
DamianoM, GalvanL, DéglonN, BrouilletE (2010). Mitochondria in Huntington’s disease. Biochim Biophys Acta, 1802(1): 52–61
Pubmed
[33]
de la MonteS M, VonsattelJ P, RichardsonE P Jr, (1988). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol, 47(5): 516–525
Pubmed
[34]
Di PardoA, MaglioneV, AlpaughM, HorkeyM, AtwalR S, SassoneJ, CiammolaA, SteffanJ S, FouadK, TruantR, SipioneS (2012). Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A, 109(9): 3528–3533
Pubmed
[35]
DiFigliaM, SappE, ChaseK, SchwarzC, MeloniA, YoungC, MartinE, VonsattelJ P, CarrawayR, ReevesS A, et al (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14(5): 1075–1081
Pubmed
[36]
DiFigliaM, SappE, ChaseK O, DaviesS W, BatesG P, VonsattelJ P, AroninN (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277(5334): 1990–1993
Pubmed
[37]
DiFigliaM, Sena-EstevesM, ChaseK, SappE, PfisterE, SassM, YoderJ, ReevesP, PandeyR K, RajeevK G, ManoharanM, SahD W, ZamoreP D, AroninN (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A, 104(43): 17204–17209
Pubmed
[38]
DonmezG (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci,33(9): 494–501
CrossRef Google scholar
[39]
DuffK, PaulsenJ S, BeglingerL J, LangbehnD R, WangC, StoutJ C, RossC A, AylwardE, CarlozziN E, QuellerS, and the Predict-HD Investigators of the Huntington Study Group (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci, 22(2): 196–207
Pubmed
[40]
DumasE M, van den BogaardS J A, RuberM E, ReilmanR R, StoutJ C, CraufurdD, HicksS L, KennardC, TabriziS J, van BuchemM A, van der GrondJ, RoosR A (2012). Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp, 33(1): 203–212
Pubmed
[41]
DuyaoM P, AuerbachA B, RyanA, PersichettiF, BarnesG T, McNeilS M, GeP, VonsattelJ P, GusellaJ F, JoynerA L, (1995). Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science, 269(5222): 407–410
Pubmed
[42]
EhrnhoeferD E, SuttonL, HaydenM R(2011). Small Changes, Big Impact: Posttranslational Modifications and Function of Huntingtin in Huntington Disease. Neuroscientist, 17(5): 475–492
[43]
FaideauM, KimJ, CormierK, GilmoreR, WelchM, AureganG, DufourN, GuillermierM, BrouilletE, HantrayeP, DéglonN, FerranteR J, BonventoG (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet, 19(15): 3053–3067
Pubmed
[44]
FerranteR J, KowallN W, BealM F, MartinJ B, BirdE D, RichardsonE P Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol, 46(1): 12–27
Pubmed
[45]
FerranteR J, KowallN W, BealM F, RichardsonE P Jr, BirdE D, MartinJ B (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230(4725): 561–563
Pubmed
[46]
FiaccoT A, McCarthyK D (2004). Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci, 24(3): 722–732
Pubmed
[47]
FuscoF R, ChenQ, LamoreauxW J, Figueredo-CardenasG, JiaoY, CoffmanJ A, SurmeierD J, HonigM G, CarlockL R, ReinerA (1999). Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci, 19(4): 1189–1202
Pubmed
[48]
GafniJ, PapanikolaouT, DegiacomoF, HolcombJ, ChenS, MenalledL, KudwaA, FitzpatrickJ, MillerS, RambozS, TuunanenP I, LehtimäkiK K, YangX W, ParkL, KwakS, HowlandD, ParkH, EllerbyL M (2012). Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci, 32(22): 7454–7465
Pubmed
[49]
GauthierL R, CharrinB C, Borrell-PagèsM, DompierreJ P, RangoneH, CordelièresF P, De MeyJ, MacDonaldM E, LessmannV, HumbertS, SaudouF (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118(1): 127–138
Pubmed
[50]
GlassC K, SaijoK, WinnerB, MarchettoM C, GageF H (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6): 918–934
Pubmed
[51]
GorskiJ A, TalleyT, QiuM, PuellesL, RubensteinJ L R, JonesK R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci, 22(15): 6309–6314
Pubmed
[52]
GrahamR K, DengY, CarrollJ, VaidK, CowanC, PouladiM A, MetzlerM, BissadaN, WangL, FaullR L M, GrayM, YangX W, RaymondL A, HaydenM R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci, 30(45): 15019–15029
Pubmed
[53]
GrahamR K, DengY, SlowE J, HaighB, BissadaN, LuG, PearsonJ, ShehadehJ, BertramL, MurphyZ, WarbyS C, DotyC N, RoyS, WellingtonC L, LeavittB R, RaymondL A, NicholsonD W, HaydenM R (2006). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 125(6): 1179–1191
Pubmed
[54]
GrayM, ShirasakiD I, CepedaC, AndréV M, WilburnB, LuX H, TaoJ, YamazakiI, LiS H, SunY E, LiX J, LevineM S, YangX W (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci, 28(24): 6182–6195
Pubmed
[55]
GraybielA M (2000). The basal ganglia. Curr Biol, 10(14): R509–R511
Pubmed
[56]
GreinerE R, YangX W (2011). Huntington’s disease: flipping a switch on huntingtin. Nat Chem Biol, 7(7): 412–414
Pubmed
[57]
GuX, AndréV M, CepedaC, LiS H, LiX J, LevineM S, YangX W (2007). Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener, 2: 8
Pubmed
[58]
GuX, GreinerE R, MishraR, KodaliR, OsmandA, FinkbeinerS, SteffanJ S, ThompsonL M, WetzelR, YangX W (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron, 64(6): 828–840
Pubmed
[59]
GuX, LiC, WeiW, LoV, GongS, LiS H, IwasatoT, ItoharaS, LiX J, ModyI, HeintzN, YangX W (2005). Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron, 46(3): 433–444
Pubmed
[60]
GuarenteL (2007). Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol, 72: 483–488
Pubmed
[61]
GuidettiP, BatesG P, GrahamR K, HaydenM R, LeavittB R, MacDonaldM E, SlowE J, WheelerV C, WoodmanB, SchwarczR (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 23(1): 190–197
Pubmed
[62]
GutekunstC A, LiS H, YiH, MulroyJ S, KuemmerleS, JonesR, RyeD, FerranteR J, HerschS M, LiX J (1999). Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci, 19(7): 2522–2534
Pubmed
[63]
HardinghamG E, BadingH (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci, 26(2): 81–89
Pubmed
[64]
HardinghamG E, BadingH(2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 682(11): 1–15
[65]
HarperS Q, StaberP D, HeX, EliasonS L, MartinsI H, MaoQ, YangL, KotinR M, PaulsonH L, DavidsonB L (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A, 102(16): 5820–5825
Pubmed
[66]
HarrisG J, PearlsonG D, PeyserC E, AylwardE H, RobertsJ, BartaP E, ChaseG A, FolsteinS E (1992). Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol, 31(1): 69–75
Pubmed
[67]
HarrisonL M (2012). Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology. Cell Mol Neurobiol, 32(6): 907–918
[68]
HedreenJ C, PeyserC E, FolsteinS E, RossC A (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett, 133(2): 257–261
Pubmed
[69]
HengM Y, DetloffP J, AlbinR L (2008). Rodent genetic models of Huntington disease. Neurobiol Dis, 32(1): 1–9
Pubmed
[70]
HengM Y, DetloffP J, WangP L, TsienJ Z, AlbinR L (2009). In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci, 29(10): 3200–3205
Pubmed
[71]
HodgsonJ G, AgopyanN, GutekunstC A, LeavittB R, LePianeF, SingarajaR, SmithD J, BissadaN, McCutcheonK, NasirJ, JamotL, LiX J, StevensM E, RosemondE, RoderJ C, PhillipsA G, RubinE M, HerschS M, HaydenM R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1): 181–192
Pubmed
[72]
HolmesS E, O’HearnE, RosenblattA, CallahanC, HwangH S, Ingersoll-AshworthR G, FleisherA, StevaninG, BriceA, PotterN T, RossC A, MargolisR L (2001). A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet, 29(4): 377–378
Pubmed
[73]
HoutkooperR H, PirinenE, AuwerxJ (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13(4): 225–238
Pubmed
[74]
HultS, SoyluR, BjörklundT, BelgardtB F, MauerJ, BrüningJ C, KirikD, PetersénÅ (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab, 13(4): 428–439
Pubmed
[75]
HumbertS, BrysonE A, CordelièresF P, ConnorsN C, DattaS R, FinkbeinerS, GreenbergM E, SaudouF (2002). The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell, 2(6): 831–837
Pubmed
[76]
IwasatoT, DatwaniA, WolfA M, NishiyamaH, TaguchiY, TonegawaS, KnöpfelT, ErzurumluR S, ItoharaS (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731
Pubmed
[77]
JauchD, UrbańskaE M, GuidettiP, BirdE D, VonsattelJ P, WhetsellW O Jr, SchwarczR (1995). Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci, 130(1): 39–47
Pubmed
[78]
JeongH, CohenD E, CuiL, SupinskiA, SavasJ N, MazzulliJ R, YatesJ R 3rd, BordoneL, GuarenteL, KraincD (2012). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med, 18(1): 159–165
Pubmed
[79]
JeongH, ThenF, MeliaT J Jr, MazzulliJ R, CuiL, SavasJ N, VoisineC, PaganettiP, TaneseN, HartA C, YamamotoA, KraincD (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72
Pubmed
[80]
JerniganT L, SalmonD P, ButtersN, HesselinkJ R (1991). Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry, 29(1): 68–81
Pubmed
[81]
JiangM, WangJ, FuJ, DuL, JeongH, WestT, XiangL, PengQ, HouZ, CaiH, SeredeninaT, ArbezN, ZhuS, SommersK, QianJ, ZhangJ, MoriS, YangX W, TamashiroK L, AjaS, MoranT H, Luthi-CarterR, MartinB, MaudsleyS, MattsonM P, CichewiczR H, RossC A, HoltzmanD M, KraincD, DuanW (2012). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med, 18(1): 153–158
Pubmed
[82]
JohriA, CalingasanN Y, HennesseyT M, SharmaA, YangL, WilleE, ChandraA, BealM F (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet, 21(5): 1124–1137
Pubmed
[83]
KimJ, MoodyJ P, EdgerlyC K, BordiukO L, CormierK, SmithK, BealM F, FerranteR J (2010). Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet, 19(20): 3919–3935
Pubmed
[84]
KitaH, KitaiS T (1988). Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res, 447(2): 346–352
Pubmed
[85]
KlöppelS, DraganskiB, GoldingC V, ChuC, NagyZ, CookP A, HicksS L, KennardC, AlexanderD C, ParkerG J M, TabriziS J, FrackowiakR S (2008). White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain, 131(Pt 1): 196–204
Pubmed
[86]
KolodziejL R, PaleologE M, WilliamsR O (2011). Kynurenine metabolism in health and disease. Amino Acids, 41(5): 1173–1183
Pubmed
[87]
KordasiewiczH B, StanekL M, WancewiczE V, MazurC, McAlonisM M, PytelK A, ArtatesJ W, WeissA, ChengS H, ShihabuddinL S, HungG, BennettC F, ClevelandD W (2012). Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron, 74(6): 1031–1044
Pubmed
[88]
KovácsK A, SteulletP, SteinmannM, DoK Q, MagistrettiP J, HalfonO, CardinauxJ R (2007). TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A, 104(11): 4700–4705
Pubmed
[89]
LangeH, ThörnerG, HopfA, SchröderK F (1976). Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci, 28(4): 401–425
Pubmed
[90]
LevineM S, KlapsteinG J, KoppelA, GruenE, CepedaC, VargasM E, JokelE S, CarpenterE M, ZanjaniH, HurstR S, EfstratiadisA, ZeitlinS, ChesseletM F (1999). Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res, 58(4): 515–532
Pubmed
[91]
LiH, LiS H, JohnstonH, ShelbourneP F, LiX J (2000). Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet, 25(4): 385–389
Pubmed
[92]
LiL, FanM, IctonC D, ChenN, LeavittB R, HaydenM R, MurphyT H, RaymondL A (2003). Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging, 24(8): 1113–1121
Pubmed
[93]
LiS, ZhangC, TakemoriH, ZhouY, XiongZ Q (2009). TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci, 29(8): 2334–2343
Pubmed
[94]
LiévensJ C, WoodmanB, MahalA, Spasic-BoscovicO, SamuelD, Kerkerian-Le GoffL, BatesG P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis, 8(5): 807–821
Pubmed
[95]
LinJ, WuP H, TarrP T, LindenbergK S, St-PierreJ, ZhangC Y, MoothaV K, JägerS, ViannaC R, ReznickR M, CuiL, ManieriM, DonovanM X, WuZ, CooperM P, FanM C, RohasL M, ZavackiA M, CintiS, ShulmanG I, LowellB B, KraincD, SpiegelmanB M (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119(1): 121–135
Pubmed
[96]
LinJ, YangR, TarrP T, WuP H, HandschinC, LiS, YangW, PeiL, UldryM, TontonozP, NewgardC B, SpiegelmanB M (2005). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell, 120(2): 261–273
Pubmed
[97]
LuX H, YangX W (2012). “Huntingtin Holiday”: Progress toward an Antisense Therapy for Huntington’s Disease. Neuron, 74(6): 964–966
Pubmed
[98]
LunkesA, LindenbergK S, Ben-HaïemL, WeberC, DevysD, LandwehrmeyerG B, MandelJ L, TrottierY (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell, 10(2): 259–269
Pubmed
[99]
Luthi-CarterR, StrandA, PetersN L, SolanoS M, HollingsworthZ R, MenonA S, FreyA S, SpektorB S, PenneyE B, SchillingG, RossC A, BorcheltD R, TapscottS J, YoungA B, ChaJ H, OlsonJ M (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet, 9(9): 1259–1271
Pubmed
[100]
MacdonaldV, HallidayG (2002). Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis, 10(3): 378–386
Pubmed
[101]
MangiariniL, SathasivamK, SellerM, CozensB, HarperA, HetheringtonC, LawtonM, TrottierY, LehrachH, DaviesS W, BatesG P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3): 493–506
Pubmed
[102]
MannD M, OliverR, SnowdenJ S (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol, 85(5): 553–559
Pubmed
[103]
MantamadiotisT, LembergerT, BleckmannS C, KernH, KretzO, Martin VillalbaA, TroncheF, KellendonkC, GauD, KapfhammerJ, OttoC, SchmidW, SchützG (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat Genet, 31(1): 47–54
Pubmed
[104]
MattssonB, GottfriesC G, RoosB E, WinbladB (1974). Huntington’s chorea: pathology and brain amines. Acta Psychiatr Scand Suppl, 255: 269–277
Pubmed
[105]
McBrideJ L, BoudreauR L, HarperS Q, StaberP D, MonteysA M, MartinsI, GilmoreB L, BursteinH, PelusoR W, PoliskyB, CarterB J, DavidsonB L (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A, 105(15): 5868–5873
Pubmed
[106]
McGillJ K, BealM F (2006). PGC-1α, a new therapeutic target in Huntington’s disease?Cell, 127(3): 465–468
Pubmed
[107]
MenalledL, El-KhodorB F, PatryM, Suárez-FariñasM, OrensteinS J, ZahaskyB, LeahyC, WheelerV, YangX W, MacDonaldM E, MortonA J, BatesG, LeedsJ, ParkL, HowlandD, SignerE, TobinA, BrunnerD (2009). Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis, 35(3): 319–336
Pubmed
[108]
MenalledL B, SisonJ D, DragatsisI, ZeitlinS, ChesseletM F O (2003). Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol, 465(1): 11–26
Pubmed
[109]
MetzlerM, GanL, MazareiG, GrahamR K, LiuL, BissadaN, LuG, LeavittB R, HaydenM R (2010). Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci, 30(43): 14318–14329
Pubmed
[110]
MillerB R, DornerJ L, ShouM, SariY, BartonS J, SengelaubD R, KennedyR T, RebecG V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 153(1): 329–337
Pubmed
[111]
MillerJ P, HolcombJ, Al-RamahiI, de HaroM, GafniJ, ZhangN, KimE, SanhuezaM, TorcassiC, KwakS, BotasJ, HughesR E, EllerbyL M (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron, 67(2): 199–212
Pubmed
[112]
MilnerwoodA J, CummingsD M, DalléracG M, BrownJ Y, VatsavayaiS C, HirstM C, RezaieP, MurphyK P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet, 15(10): 1690–1703
Pubmed
[113]
MilnerwoodA J, GladdingC M, PouladiM A, KaufmanA M, HinesR M, BoydJ D, KoR W Y, VasutaO C, GrahamR K, HaydenM R, MurphyT H, RaymondL A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 65(2): 178–190
Pubmed
[114]
MilnerwoodA J, RaymondL A (2010). Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci, 33(11): 513–523
Pubmed
[115]
MyersR H, VonsattelJ P, PaskevichP A, KielyD K, StevensT J, CupplesL A, RichardsonE P Jr, BirdE D (1991). Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol, 50(6): 729–742
Pubmed
[116]
OkamotoS I, PouladiM A, TalantovaM, YaoD, XiaP, EhrnhoeferD E, ZaidiR, ClementeA, KaulM, GrahamR K, ZhangD, Vincent ChenH S, TongG, HaydenM R, LiptonS A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med,
CrossRef Google scholar
[117]
OrrH T, ZoghbiH Y (2007). Trinucleotide repeat disorders. Annu Rev Neurosci, 30: 575–621
Pubmed
[118]
ParkerJ A, ArangoM, AbderrahmaneS, LambertE, TouretteC, CatoireH, NériC (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet, 37(4): 349–350
Pubmed
[119]
PaulsenJ S, HaydenM, StoutJ C, LangbehnD R, AylwardE, RossC A, GuttmanM, NanceM, KieburtzK, OakesD, ShoulsonI, KaysonE, JohnsonS, PenzinerE, Predict-HD Investigators of the Huntington Study Group (2006). Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol, 63(6): 883–890
Pubmed
[120]
PaulsenJ S, LangbehnD R, StoutJ C, AylwardE, RossC A, NanceM, GuttmanM, JohnsonS, MacDonaldM, BeglingerL J, DuffK, KaysonE, BiglanK, ShoulsonI, OakesD, HaydenM, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008). Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry, 79(8): 874–880
Pubmed
[121]
PaulsenJ S, WangC, DuffK, BarkerR, NanceM, BeglingerL, MoserD, WilliamsJ K, SimpsonS, LangbehnD, van KammenD P, and the PREDICT-HD Investigators of the Huntington Study Group (2010). Challenges assessing clinical endpoints in early Huntington disease. Mov Disord, 25(15): 2595–2603
Pubmed
[122]
PetersénÅ, BjörkqvistM (2006). Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci, 24(4): 961–967
Pubmed
[123]
PfriegerF W, UngererN (2011). Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res, 50(4): 357–371
Pubmed
[124]
Ramos,E. M., Latourelle,J. C., Lee,J.-H., Gillis,T., Mysore,J. S., Squitieri,F., Pardo,A., Donato,S., Hayden,M. R., Morrison,P. J., . (2012). Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum. Genet.
[125]
RatovitskiT, GucekM, JiangH, ChighladzeE, WaldronE, D’AmbolaJ, HouZ, LiangY, PoirierM A, HirschhornR R, GrahamR, HaydenM R, ColeR N, RossC A (2009). Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem, 284(16): 10855–10867
Pubmed
[126]
RaymondL A, AndréV M, CepedaC, GladdingC M, MilnerwoodA J, LevineM S (2011). Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience, 198: 252–273
Pubmed
[127]
ReadingS A J, YassaM A, BakkerA, DziornyA C, GourleyL M, YallapragadaV, RosenblattA, MargolisR L, AylwardE H, BrandtJ, MoriS, van ZijlP, BassettS S, RossC A (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res, 140(1): 55–62
Pubmed
[128]
ReinerA, AlbinR L, AndersonK D, D’AmatoC J, PenneyJ B, YoungA B (1988). Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A, 85(15): 5733–5737
Pubmed
[129]
ReinerA, DragatsisI, ZeitlinS, GoldowitzD (2003). Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol, 28(3): 259–276
Pubmed
[130]
RoosR A, BotsG T, HermansJ (1986). Quantitative analysis of morphological features in Huntington’s disease. Acta Neurol Scand, 73(2): 131–135
Pubmed
[131]
RosasH D, FeiginA S, HerschS M (2004). Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx, 1(2): 263–272
Pubmed
[132]
RosasH D, KoroshetzW J, ChenY I, SkeuseC, VangelM, CudkowiczM E, CaplanK, MarekK, SeidmanL J, MakrisN, JenkinsB G, GoldsteinJ M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10): 1615–1620
Pubmed
[133]
RosasH D, LeeS Y, BenderA C, ZaletaA K, VangelM, YuP, FischlB, PappuV, OnoratoC, ChaJ H, SalatD H, HerschS M (2010). Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage, 49(4): 2995–3004
Pubmed
[134]
RosasH D, SalatD H, LeeS Y, ZaletaA K, HeveloneN, HerschS M (2008). Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci, 1147: 196–<OrgAddress>205</OrgAddress>
Pubmed
[135]
RosasH D, TuchD S, HeveloneN D, ZaletaA K, VangelM, HerschS M, SalatD H (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord, 21(9): 1317–1325
Pubmed
[136]
RossC A, TabriziS J (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol, 10(1): 83–98
Pubmed
[137]
RunneH, RégulierE, KuhnA, ZalaD, GokceO, PerrinV, SickB, AebischerP, DéglonN, Luthi-CarterR (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci, 28(39): 9723–9731
Pubmed
[138]
SavoiardoM, StradaL, OlivaD, GirottiF, D’IncertiL (1991). Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry, 54(10): 888–891
Pubmed
[139]
SchillingG, BecherM W, SharpA H, JinnahH A, DuanK, KotzukJ A, SluntH H, RatovitskiT, CooperJ K, JenkinsN A, CopelandN G, PriceD L, RossC A, BorcheltD R (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet, 8(3): 397–407
Pubmed
[140]
SchwarczR, BennettJ P Jr, CoyleJ T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem, 28(4): 867–869
Pubmed
[141]
SchwarczR, GuidettiP, SathyasaikumarK V, MuchowskiP J (2010). Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol, 90(2): 230–245
Pubmed
[142]
SharmaP, SavyL, BrittonJ, TaylorR, HowickA, PattonM (1996). Huntington’s disease: a molecular genetic and CT comparison. J Neurol Neurosurg Psychiatry, 60(2): 206–208
Pubmed
[143]
ShaywitzA J, GreenbergM E (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 68: 821–861
Pubmed
[144]
ShinJ Y, FangZ H, YuZ X, WangC E, LiS H, LiX J (2005). Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol, 171(6): 1001–1012
Pubmed
[145]
SimmonsD A, MehtaR A, LauterbornJ C, GallC M, LynchG (2011). Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice. Neurobiol Dis, 41(2): 436–444
Pubmed
[146]
SimmonsD A, RexC S, PalmerL, PandyarajanV, FedulovV, GallC M, LynchG (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A, 106(12): 4906–4911
Pubmed
[147]
SlowE J, van RaamsdonkJ, RogersD, ColemanS H, GrahamR K, DengY, OhR, BissadaN, HossainS M, YangY Z, LiX J, SimpsonE M, GutekunstC A, LeavittB R, HaydenM R (2003). Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet, 12(13): 1555–1567
Pubmed
[148]
SpampanatoJ, GuX, YangX W, ModyI (2008). Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience, 157(3): 606–620
Pubmed
[149]
SteffanJ S, AgrawalN, PallosJ, RockabrandE, TrotmanL C, SlepkoN, IllesK, LukacsovichT, ZhuY Z, CattaneoE, PandolfiP P, ThompsonL M, MarshJ L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science, 304(5667): 100–104
Pubmed
[150]
StrandA D, BaquetZ C, AragakiA K, HolmansP, YangL, ClerenC, BealM F, JonesL, KooperbergC, OlsonJ M, JonesK R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci, 27(43): 11758–11768
Pubmed
[151]
SubramaniamS, SixtK M, BarrowR, SnyderS H (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science, 324(5932): 1327–1330
Pubmed
[152]
SubramaniamS, SnyderS H (2011). Huntington’s disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology, 60(7–8): 1187–1192
Pubmed
[153]
TabriziS J, LangbehnD R, LeavittB R, RoosR A, DurrA, CraufurdD, KennardC, HicksS L, FoxN C, ScahillR I, BorowskyB, TobinA J, RosasH D, JohnsonH, ReilmannR, LandwehrmeyerB, StoutJ C, TRACK-HD investigators (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol, 8(9): 791–801
Pubmed
[154]
TabriziS J, ReilmannR, RoosR A C, DurrA, LeavittB, OwenG, JonesR, JohnsonH, CraufurdD, HicksS L, KennardC, LandwehrmeyerB, StoutJ C, BorowskyB, ScahillR I, FrostC, LangbehnD R, TRACK-HD investigators (2012). Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol, 11(1): 42–53
Pubmed
[155]
Tallaksen-GreeneS J, JaniszewskaA, BentonK, RuprechtL, AlbinR L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol, 225(2): 402–407
Pubmed
[156]
TebbenkampA T N, GreenC, XuG, Denovan-WrightE M, RisingA C, FromholtS E, BrownH H, SwingD, MandelR J, TessarolloL, BorcheltD R (2011). Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet, 20(14): 2770–2782
Pubmed
[157]
The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983
Pubmed
[158]
ThomasE A, CoppolaG, TangB, KuhnA, KimS, GeschwindD H, BrownT B, Luthi-Carter R, EhrlichM E (2011). In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet, 20(6): 1049–1060
Pubmed
[159]
ThompsonL M, AikenC T, KaltenbachL S, AgrawalN, IllesK, KhoshnanA, Martinez-VincenteM, ArrasateM, O’RourkeJ G, KhashwjiH, LukacsovichT, ZhuY Z, LauA L, MasseyA, HaydenM R, ZeitlinS O, FinkbeinerS, GreenK N, LaFerlaF M, BatesG, HuangL, PattersonP H, LoD C, CuervoA M, MarshJ L, SteffanJ S (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol, 187(7): 1083–1099
Pubmed
[160]
TsunemiT, AsheT D, MorrisonB E, SorianoK R, AuJ, RoqueR A V, LazarowskiE R, DamianV A, MasliahE, La SpadaA R (2012). PGC-1 rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med, 142(4): 142ra97
[161]
ValenzaM, LeoniV, KarasinskaJ M, PetriccaL, FanJ, CarrollJ, PouladiM A, FossaleE, NguyenH P, RiessO, MacDonaldM, WellingtonC, DiDonatoS, HaydenM, CattaneoE (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci, 30(32): 10844–10850
Pubmed
[162]
van den BogaardS J A, DumasE M, AcharyaT P, JohnsonH, LangbehnD R, ScahillR I, TabriziS J, van BuchemM A, van der GrondJ, RoosR A C, the TRACK-HD Investigator Group (2011a). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol, 258(3): 412–420
Pubmed
[163]
van den BogaardS J A, DumasE M, FerrariniL, MillesJ, van BuchemM A, van der GrondJ, RoosR A C (2011b). Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy—results from the TRACK-HD study. J Neurol Sci, 307(1–2): 60–68
Pubmed
[164]
VonsattelJ P, DiFigliaM (1998). Huntington disease. J Neuropathol Exp Neurol, 57(5): 369–384
Pubmed
[165]
VonsattelJ P, MyersR H, StevensT J, FerranteR J, BirdE D, RichardsonE P Jr (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol, 44(6): 559–577
Pubmed
[166]
VonsattelJ P G (2008). Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol, 115(1): 55–69
Pubmed
[167]
Waldron-RobyE, RatovitskiT, WangX, JiangM, WatkinE, ArbezN, GrahamR K, HaydenM R, HouZ, MoriS, SwingD, PletnikovM, DuanW, TessarolloL, RossC A (2012). Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci, 32(1): 183–193
Pubmed
[168]
WangL, LinF, WangJ, WuJ, HanR, ZhuL, ZhangG, DiFigliaM, QinZ (2012). Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai), 44(3): 249–258
Pubmed
[169]
WarbyS C, DotyC N, GrahamR K, ShivelyJ, SingarajaR R, HaydenM R (2009). Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci, 40(2): 121–127
Pubmed
[170]
WellingtonC L, EllerbyL M, LeavittB R, RoyS, NicholsonD W, HaydenM R (2003). Huntingtin proteolysis in Huntington disease. Clin Neurosci Res, 3: 129–139
[171]
WeydtP, PinedaV V, TorrenceA E, LibbyR T, SatterfieldT F, LazarowskiE R, GilbertM L, MortonG J, BammlerT K, StrandA D, CuiL, BeyerR P, EasleyC N, SmithA C, KraincD, LuquetS, SweetI R, SchwartzM W, La SpadaA R (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab, 4(5): 349–362
Pubmed
[172]
WhiteJ K, AuerbachW, DuyaoM P, VonsattelJ P, GusellaJ F, JoynerA L, MacDonaldM E (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet, 17(4): 404–410
Pubmed
[173]
WilburnB, RudnickiD D, ZhaoJ, WeitzT M, ChengY, GuX, GreinerE, ParkC S, WangN, SopherB L, La SpadaA R, OsmandA, MargolisR L, SunY E, YangX W (2011). An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron, 70(3): 427–440
Pubmed
[174]
WoodmanB, ButlerR, LandlesC, LuptonM K, TseJ, HocklyE, MoffittH, SathasivamK, BatesG P (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull, 72(2–3): 83–97
Pubmed
[175]
WuZ, PuigserverP, AnderssonU, ZhangC, AdelmantG, MoothaV, TroyA, CintiS, LowellB, ScarpullaR C, SpiegelmanB M (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1): 115–124
Pubmed
[176]
XieY, HaydenM R, XuB (2010). BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci, 30(44): 14708–14718
Pubmed
[177]
YanaiA, HuangK, KangR, SingarajaR R, ArstikaitisP, GanL, OrbanP C, MullardA, CowanC M, RaymondL A, DrisdelR C, GreenW N, RavikumarB, RubinszteinD C, El-HusseiniA, HaydenM R (2006). Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci, 9(6): 824–831
Pubmed
[178]
Yang,X. W., and Gray,M. (2011). Mouse Models for Validating Preclinical Candidates for Huntington’s Disease. Neurobiology of Huntington’s Disease: Applications to Drug Discovery.
[179]
ZeronM M, HanssonO, ChenN, WellingtonC L, LeavittB R, BrundinP, HaydenM R, RaymondL A (2002). Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 33(6): 849–860
Pubmed
[180]
Zheng,B., Liao,Z., Locascio,J. J., Lesniak,K. A., Roderick,S. S., Watt,M. L., Eklund,A. C., Zhang-James,Y., Kim,P. D., Hauser,M. A., . (2010). PGC-1, A Potential Therapeutic Target for Early Intervention in Parkinson's Disease. Sci. Transl. Med. 2, 52ra73–52ra73.
[181]
ZuccatoC, CiammolaA, RigamontiD, LeavittB R, GoffredoD, ContiL, MacDonaldM E, FriedlanderR M, SilaniV, HaydenM R, TimmuskT, SipioneS, CattaneoE (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293(5529): 493–498
Pubmed
[182]
ZuccatoC, TartariM, CrottiA, GoffredoD, ValenzaM, ContiL, CataudellaT, LeavittB R, HaydenM R, TimmuskT, RigamontiD, CattaneoE (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet, 35(1): 76–83
Pubmed
[183]
ZuccatoC, ValenzaM, CattaneoE (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev, 90(3): 905–981
Pubmed
[184]
ZwillingD, HuangS Y, SathyasaikumarK V, NotarangeloF M, GuidettiP, WuH Q, LeeJ, TruongJ, Andrews-ZwillingY, HsiehE W, LouieJ Y, WuT, Scearce-LevieK, PatrickC, AdameA, GiorginiF, MoussaouiS, LaueG, RassoulpourA, FlikG, HuangY, MuchowskiJ M, MasliahE, SchwarczR, MuchowskiP J (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 145(6): 863–874
Pubmed

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(374 KB)

Accesses

Citations

Detail

Sections
Recommended

/