REVIEW

Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants

  • Priyanka B. SUBRAHMANYAM ,
  • Tonya J. WEBB
Expand
  • Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201, USA

Received date: 17 Nov 2011

Accepted date: 16 Jan 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Natural killer T (NKT) cells comprise a small, but important T cell subset and are thought to bridge the innate and adaptive immune responses. The discovery of NKT cells and extensive research on their activating ligands have paved the way for modulation of these potent immunoregulatory cells in order to improve the outcome of various clinical conditions. Efforts to modulate NKT cell effector functions have ranged from therapy for influenza to anti-tumor immunotherapy. These approaches have also led to the use of NKT cell agonists such as α-Galactosylceramide (α-GalCer) and its analogs as vaccine adjuvants, an approach that is aimed at boosting specific B and T cell responses to a vaccine candidate by concomitant activation of NKT cells. In this review we will provide a comprehensive overview of the efforts made in using α-GalCer and its analogs as vaccine adjuvants. The diverse array of vaccination strategies used, as well as the role of NKT cell activating adjuvants will be discussed, with focus on vaccines against malaria, HIV, influenza and tumor vaccines. Collectively, these studies demonstrate the efficacy of NKT cell-specific agonists as adjuvants and suggest that these compounds warrant serious consideration during the development of vaccination strategies.

Cite this article

Priyanka B. SUBRAHMANYAM , Tonya J. WEBB . Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants[J]. Frontiers in Biology, 2012 , 7(5) : 436 -444 . DOI: 10.1007/s11515-012-1194-2

Acknowledgments

The authors have no competing financial interest. This work was supported by grants from the American Cancer Society, NIH/NCI K01 CA131487, R21 CA162273, R21 CA162277, and P30 Tumor Immunology and Immunotherapy Program to T J Webb. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.
1
Bauer C, Dauer M, Saraj S, Schnurr M, Bauernfeind F, Sterzik A, Junkmann J, Jakl V, Kiefl R, Oduncu F, Emmerich B, Mayr D, Mussack T, Bruns C, Rüttinger D, Conrad C, Jauch K W, Endres S, Eigler A (2011). Dendritic cell-based vaccination of patients with advanced pancreatic carcinoma: results of a pilot study. Cancer Immunol Immunother, 60(8): 1097–1107

DOI PMID

2
Blauvelt M L, Khalili M, Jaung W, Paulsen J, Anderson A C, Brian Wilson S, Howell A R (2008). Alpha-S-GalCer: synthesis and evaluation for iNKT cell stimulation. Bioorg Med Chem Lett, 18(24): 6374–6376

DOI PMID

3
Burdin N, Brossay L, Koezuka Y, Smiley S T, Grusby M J, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998). Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol, 161(7): 3271–3281

PMID

4
Carnaud C, Lee D, Donnars O, Park S H, Beavis A, Koezuka Y, Bendelac A (1999). Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol, 163(9): 4647–4650

PMID

5
Chung Y, Qin H, Kang C Y, Kim S, Kwak L W, Dong C (2007). An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood, 110(6): 2013–2019

DOI PMID

6
Clyde D F (1975). Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg, 24(3): 397–401

PMID

7
Courtney A N, Thapa P, Singh S, Wishahy A M, Zhou D, Sastry K J (2011). Intranasal but not intravenous delivery of the adjuvant alpha-galactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol, 41(11):3312–3322

8
Crowe N Y, Coquet J M, Berzins S P, Kyparissoudis K, Keating R, Pellicci D G, Hayakawa Y, Godfrey D I, Smyth M J (2005). Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med, 202(9): 1279–1288

9
Fleuridor R, Wilson B, Hou R, Landay A, Kessler H, Al-Harthi L (2003). CD1d-restricted natural killer T cells are potent targets for human immunodeficiency virus infection. Immunology, 108(1): 3–9

DOI PMID

10
Fowlkes B J, Kruisbeek A M, Ton-That H, Weston M A, Coligan J E, Schwartz R H, Pardoll D M (1987). A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family. Nature, 329(6136): 251–254

DOI PMID

11
Giaccone G, Punt C J, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg B M, Scheper R J, van der Vliet H J, van den Eertwegh A J, Roelvink M, Beijnen J, Zwierzina H, Pinedo H M (2002). A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res, 8(12): 3702–3709

PMID

12
Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann C C, Wilson J M, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M (2002). Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med, 195(5): 617–624

DOI PMID

13
Hogan A E, O’Reilly V, Dunne M R, Dere R T, Zeng S G, O’Brien C, Amu S, Fallon P G, Exley M A, O’Farrelly C, Zhu X, Doherty D G (2011). Activation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide. Clin Immunol, 140(2): 196–207

DOI PMID

14
Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, Gurner D, Gardiner D, Basu S, Ho D D, Tsuji M (2008). Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine, 26(15): 1807–1816

DOI PMID

15
Joyce S, Woods A S, Yewdell J W, Bennink J R, De Silva A D, Boesteanu A, Balk S P, Cotter R J, Brutkiewicz R R (1998). Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science, 279(5356): 1541–1544

DOI PMID

16
Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino K I (2008). Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol, 1(3): 208–218

DOI PMID

17
Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A (2001). Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun, 69(1): 213–220

DOI PMID

18
Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997). CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science, 278(5343): 1626–1629

DOI PMID

19
Kim D, Hung C F, Wu T C, Park Y M (2010). DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine, 28(45): 7297–7305

DOI PMID

20
Kim Y J, Ko H J, Kim Y S, Kim D H, Kang S, Kim J M, Chung Y, Kang C Y (2008). Alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int J Cancer, 122(12): 2774–2783

DOI PMID

21
Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia M R, Zajonc D M, Ben-Menachem G, Ainge G D, Painter G F, Khurana A, Hoebe K, Behar S M, Beutler B, Wilson I A, Tsuji M, Sellati T J, Wong C H, Kronenberg M (2006). Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol, 7(9): 978–986

DOI PMID

22
Kinjo Y, Wu D, Kim G, Xing G W, Poles M A, Ho D D, Tsuji M, Kawahara K, Wong C H, Kronenberg M (2005). Recognition of bacterial glycosphingolipids by natural killer T cells. Nature, 434(7032): 520–525

DOI PMID

23
Ko H J, Lee J M, Kim Y J, Kim Y S, Lee K A, Kang C Y (2009). Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol, 182(4): 1818–1828

DOI PMID

24
Ko S Y, Ko H J, Chang W S, Park S H, Kweon M N, Kang C Y (2005). alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol, 175(5): 3309–3317

PMID

25
Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995). KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res, 7(10–11): 529–534

PMID

26
Kopecky-Bromberg S A, Fraser K A, Pica N, Carnero E, Moran T M, Franck R W, Tsuji M, Palese P (2009). Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine, 27(28): 3766–3774

DOI PMID

27
Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl K F, Mizutani Y, Imai K, Taniguchi M (1991). Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci USA, 88(17): 7518–7522

DOI PMID

28
Lee P T, Benlagha K, Teyton L, Bendelac A (2002). Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med, 195(5): 637–641

DOI PMID

29
Lee Y S, Lee K A, Lee J Y, Kang M H, Song Y C, Baek D J, Kim S, Kang C Y (2011). An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine, 29(3): 417–425

DOI PMID

30
Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong C H, Ho D D, Tsuji M (2010a). Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA, 107(29): 13010–13015

DOI PMID

31
Li Y, Girardi E, Wang J, Yu E D, Painter G F, Kronenberg M, Zajonc D M (2010b). The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med, 207(11): 2383–2393

DOI PMID

32
Lu X, Song L, Metelitsa L S, Bittman R (2006). Synthesis and evaluation of an alpha-C-galactosylceramide analogue that induces Th1-biased responses in human natural killer T cells. ChemBioChem, 7(11): 1750–1756

DOI PMID

33
Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995). Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol, 7(7): 1157–1161

DOI PMID

34
Matangkasombut P, Pichavant M, Yasumi T, Hendricks C, Savage P B, Dekruyff R H, Umetsu D T (2008). Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol, 121(5): 1287–1289

DOI PMID

35
Mattner J, Debord K L, Ismail N, Goff R D, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage P B, Bendelac A (2005). Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature, 434(7032): 525–529

DOI PMID

36
Miyamoto K, Miyake S, Yamamura T (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature, 413(6855): 531–534

DOI PMID

37
Molling J W, Kölgen W, van der Vliet H J, Boomsma M F, Kruizenga H, Smorenburg C H, Molenkamp B G, Langendijk J A, Leemans C R, von Blomberg B M, Scheper R J, van den Eertwegh A J (2005). Peripheral blood IFN-gamma-secreting Valpha24+ Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer, 116(1): 87–93

DOI PMID

38
Motsinger A, Haas D W, Stanic A K, Van Kaer L, Joyce S, Unutmaz D (2002). CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med, 195(7): 869–879

DOI PMID

39
Nakagawa R, Serizawa I, Motoki K, Sato M, Ueno H, Iijima R, Nakamura H, Shimosaka A, Koezuka Y (2000). Antitumor activity of alpha-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells. Oncol Res, 12(2): 51–58

PMID

40
Nam J H, Kim E H, Song D, Choi Y K, Kim J K, Poo H (2011). Emergence of mammalian species-infectious and-pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol, 7(23):3281–3286

41
Natori T, Akimoto K, Motoki K, Koezuka Y, Higa T (1997). Development of KRN7000, derived from agelasphin produced by okinawan sponge. Nihon Yakurigaku Zasshi, 110 Suppl 163P–68P

42
Niemeyer M, Darmoise A, Mollenkopf H J, Hahnke K, Hurwitz R, Besra G S, Schaible U E, Kaufmann S H (2008). Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology, 123(1): 45–56

DOI PMID

43
Osada T, Morse M A, Lyerly H K, Clay T M (2005). Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol, 17(9): 1143–1155

DOI PMID

44
Parekh V V, Wilson M T, Olivares-Villagómez D, Singh A K, Wu L, Wang C R, Joyce S, Van Kaer L (2005). Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest, 115(9): 2572–2583

DOI PMID

45
Petersen T R, Sika-Paotonu D, Knight D A, Dickgreber N, Farrand K J, Ronchese F, Hermans I F (2010). Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol, 88(5): 596–604

DOI PMID

46
Porcelli S, Gerdes D, Fertig A M, Balk S P (1996). Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4- and heterogeneous with respect to TCR beta expression. Hum Immunol, 48(1–2): 63–67

DOI PMID

47
Roberts T J, Sriram V, Spence P M, Gui M, Hayakawa K, Bacik I, Bennink J R, Yewdell J W, Brutkiewicz R R (2002). Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J Immunol, 168(11): 5409–5414

PMID

48
Rui-Hua Z, Hong-Yu C, Ming-Ju X, Kai L, Hua-Lan C, Cun-Lian W, Dong W, Cun-Xin L, Tong X (2011). Molecular characterization and pathogenicity of swine influenza H9N2 subtype virus A/swine/HeBei/012/2008/(H9N2). Acta Virol, 55(3): 219–226

DOI PMID

49
Sandberg J K, Fast N M, Palacios E H, Fennelly G, Dobroszycki J, Palumbo P, Wiznia A, Grant R M, Bhardwaj N, Rosenberg M G, Nixon D F (2002). Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol, 76(15): 7528–7534

DOI PMID

50
Schmieg J, Yang G, Franck R W, Tsuji M (2003). Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med, 198(11): 1631–1641

DOI PMID

51
Schmieg J, Yang G, Franck R W, Tsuji M (2010). A multifactorial mechanism in the superior antimalarial activity of alpha-C-GalCer. J Biomed Biotechnol, 2010: 283612

DOI PMID

52
Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V (1987). Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, 330(6149): 664–666

DOI PMID

53
Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y (2003). NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer, 106(2): 236–243

DOI PMID

54
Silk J D, Hermans I F, Gileadi U, Chong T W, Shepherd D, Salio M, Mathew B, Schmidt R R, Lunt S J, Williams K J, Stratford I J, Harris A L, Cerundolo V (2004). Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest, 114(12): 1800–1811

PMID

55
Sriram V, Du W, Gervay-Hague J, Brutkiewicz R R (2005). Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol, 35(6): 1692–1701

DOI PMID

56
Sullivan B A, Kronenberg M (2005). Activation or anergy: NKT cells are stunned by alpha-galactosylceramide. J Clin Invest, 115(9): 2328–2329

DOI PMID

57
Teng M W, Westwood J A, Darcy P K, Sharkey J, Tsuji M, Franck R W, Porcelli S A, Besra G S, Takeda K, Yagita H, Kershaw M H, Smyth M J (2007). Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res, 67(15): 7495–7504

DOI PMID

58
Thapa P, Zhang G, Xia C, Gelbard A, Overwijk W W, Liu C, Hwu P, Chang D Z, Courtney A, Sastry J K, Wang P G, Li C, Zhou D (2009). Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine, 27(25–26): 3484–3488

DOI PMID

59
Uldrich A P, Crowe N Y, Kyparissoudis K, Pellicci D G, Zhan Y, Lew A M, Bouillet P, Strasser A, Smyth M J, Godfrey D I (2005). NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol, 175(5): 3092–3101

PMID

60
van der Vliet H J, von Blomberg B M, Hazenberg M D, Nishi N, Otto S A, van Benthem B H, Prins M, Claessen F A, van den Eertwegh A J, Giaccone G, Miedema F, Scheper R J, Pinedo H M (2002). Selective decrease in circulating V alpha 24+V beta 11+ NKT cells during HIV type 1 infection. J Immunol, 168(3): 1490–1495

PMID

61
Vanderberg J P, Nussenzweig R S, Most H, Orton C G (1968). Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol, 54(6): 1175–1180

DOI PMID

62
Velmourougane G, Raju R, Bricard G, Im J S, Besra G S, Porcelli S A, Howell A R (2009). Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH. Bioorg Med Chem Lett, 19(13): 3386–3388

DOI PMID

63
Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med, 152(4 Pt 2): S25– S30

PMID

64
Yamaguchi Y, Motoki K, Ueno H, Maeda K, Kobayashi E, Inoue H, Fukushima H, Koezuka Y (1996). Enhancing effects of (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-2-(N-hexacosanoylamino) -1,3,4-octadecanetriol (KRN7000) on antigen-presenting function of antigen-presenting cells and antimetastatic activity of KRN7000-pretreated antigen-presenting cells. Oncol Res, 8(10–11): 399– 407

PMID

65
Yang G, Schmieg J, Tsuji M, Franck R W (2004). The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed Engl, 43(29): 3818–3822

DOI PMID

66
Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, Tsutsumi A, Taniguchi M, Sumida T (2008). Invariant NKT cells produce IL-17 through IL-23-dependent and-independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med, 22(3): 369–374

PMID

67
Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul W E (1995). Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science, 270(5243): 1845–1847

DOI PMID

68
Youn H J, Ko S Y, Lee K A, Ko H J, Lee Y S, Fujihashi K, Boyaka P N, Kim S H, Horimoto T, Kweon M N, Kang C Y (2007). A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine, 25(28): 5189–5198

DOI PMID

69
Yu E D, Girardi E, Wang J, Zajonc D M (2011). Cutting Edge: Structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J Immunol, 187(5): 2079–2083

DOI PMID

70
Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y P, Yamashita T, Teneberg S, Wang D, Proia R L, Levery S B, Savage P B, Teyton L, Bendelac A (2004). Lysosomal glycosphingolipid recognition by NKT cells. Science, 306(5702): 1786–1789

DOI PMID

Outlines

/