Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants

Priyanka B. SUBRAHMANYAM, Tonya J. WEBB

PDF(203 KB)
PDF(203 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 436-444. DOI: 10.1007/s11515-012-1194-2
REVIEW
REVIEW

Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants

Author information +
History +

Abstract

Natural killer T (NKT) cells comprise a small, but important T cell subset and are thought to bridge the innate and adaptive immune responses. The discovery of NKT cells and extensive research on their activating ligands have paved the way for modulation of these potent immunoregulatory cells in order to improve the outcome of various clinical conditions. Efforts to modulate NKT cell effector functions have ranged from therapy for influenza to anti-tumor immunotherapy. These approaches have also led to the use of NKT cell agonists such as α-Galactosylceramide (α-GalCer) and its analogs as vaccine adjuvants, an approach that is aimed at boosting specific B and T cell responses to a vaccine candidate by concomitant activation of NKT cells. In this review we will provide a comprehensive overview of the efforts made in using α-GalCer and its analogs as vaccine adjuvants. The diverse array of vaccination strategies used, as well as the role of NKT cell activating adjuvants will be discussed, with focus on vaccines against malaria, HIV, influenza and tumor vaccines. Collectively, these studies demonstrate the efficacy of NKT cell-specific agonists as adjuvants and suggest that these compounds warrant serious consideration during the development of vaccination strategies.

Keywords

vaccines / NKT cells and CD1d

Cite this article

Download citation ▾
Priyanka B. SUBRAHMANYAM, Tonya J. WEBB. Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants. Front Biol, 2012, 7(5): 436‒444 https://doi.org/10.1007/s11515-012-1194-2

References

[1]
Bauer C, Dauer M, Saraj S, Schnurr M, Bauernfeind F, Sterzik A, Junkmann J, Jakl V, Kiefl R, Oduncu F, Emmerich B, Mayr D, Mussack T, Bruns C, Rüttinger D, Conrad C, Jauch K W, Endres S, Eigler A (2011). Dendritic cell-based vaccination of patients with advanced pancreatic carcinoma: results of a pilot study. Cancer Immunol Immunother, 60(8): 1097–1107
CrossRef Pubmed Google scholar
[2]
Blauvelt M L, Khalili M, Jaung W, Paulsen J, Anderson A C, Brian Wilson S, Howell A R (2008). Alpha-S-GalCer: synthesis and evaluation for iNKT cell stimulation. Bioorg Med Chem Lett, 18(24): 6374–6376
CrossRef Pubmed Google scholar
[3]
Burdin N, Brossay L, Koezuka Y, Smiley S T, Grusby M J, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998). Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol, 161(7): 3271–3281
Pubmed
[4]
Carnaud C, Lee D, Donnars O, Park S H, Beavis A, Koezuka Y, Bendelac A (1999). Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol, 163(9): 4647–4650
Pubmed
[5]
Chung Y, Qin H, Kang C Y, Kim S, Kwak L W, Dong C (2007). An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood, 110(6): 2013–2019
CrossRef Pubmed Google scholar
[6]
Clyde D F (1975). Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg, 24(3): 397–401
Pubmed
[7]
Courtney A N, Thapa P, Singh S, Wishahy A M, Zhou D, Sastry K J (2011). Intranasal but not intravenous delivery of the adjuvant alpha-galactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol, 41(11):3312–3322
[8]
Crowe N Y, Coquet J M, Berzins S P, Kyparissoudis K, Keating R, Pellicci D G, Hayakawa Y, Godfrey D I, Smyth M J (2005). Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med, 202(9): 1279–1288
[9]
Fleuridor R, Wilson B, Hou R, Landay A, Kessler H, Al-Harthi L (2003). CD1d-restricted natural killer T cells are potent targets for human immunodeficiency virus infection. Immunology, 108(1): 3–9
CrossRef Pubmed Google scholar
[10]
Fowlkes B J, Kruisbeek A M, Ton-That H, Weston M A, Coligan J E, Schwartz R H, Pardoll D M (1987). A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family. Nature, 329(6136): 251–254
CrossRef Pubmed Google scholar
[11]
Giaccone G, Punt C J, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg B M, Scheper R J, van der Vliet H J, van den Eertwegh A J, Roelvink M, Beijnen J, Zwierzina H, Pinedo H M (2002). A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res, 8(12): 3702–3709
Pubmed
[12]
Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann C C, Wilson J M, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M (2002). Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med, 195(5): 617–624
CrossRef Pubmed Google scholar
[13]
Hogan A E, O’Reilly V, Dunne M R, Dere R T, Zeng S G, O’Brien C, Amu S, Fallon P G, Exley M A, O’Farrelly C, Zhu X, Doherty D G (2011). Activation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide. Clin Immunol, 140(2): 196–207
CrossRef Pubmed Google scholar
[14]
Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, Gurner D, Gardiner D, Basu S, Ho D D, Tsuji M (2008). Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine, 26(15): 1807–1816
CrossRef Pubmed Google scholar
[15]
Joyce S, Woods A S, Yewdell J W, Bennink J R, De Silva A D, Boesteanu A, Balk S P, Cotter R J, Brutkiewicz R R (1998). Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science, 279(5356): 1541–1544
CrossRef Pubmed Google scholar
[16]
Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino K I (2008). Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol, 1(3): 208–218
CrossRef Pubmed Google scholar
[17]
Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A (2001). Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun, 69(1): 213–220
CrossRef Pubmed Google scholar
[18]
Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997). CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science, 278(5343): 1626–1629
CrossRef Pubmed Google scholar
[19]
Kim D, Hung C F, Wu T C, Park Y M (2010). DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine, 28(45): 7297–7305
CrossRef Pubmed Google scholar
[20]
Kim Y J, Ko H J, Kim Y S, Kim D H, Kang S, Kim J M, Chung Y, Kang C Y (2008). Alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int J Cancer, 122(12): 2774–2783
CrossRef Pubmed Google scholar
[21]
Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia M R, Zajonc D M, Ben-Menachem G, Ainge G D, Painter G F, Khurana A, Hoebe K, Behar S M, Beutler B, Wilson I A, Tsuji M, Sellati T J, Wong C H, Kronenberg M (2006). Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol, 7(9): 978–986
CrossRef Pubmed Google scholar
[22]
Kinjo Y, Wu D, Kim G, Xing G W, Poles M A, Ho D D, Tsuji M, Kawahara K, Wong C H, Kronenberg M (2005). Recognition of bacterial glycosphingolipids by natural killer T cells. Nature, 434(7032): 520–525
CrossRef Pubmed Google scholar
[23]
Ko H J, Lee J M, Kim Y J, Kim Y S, Lee K A, Kang C Y (2009). Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol, 182(4): 1818–1828
CrossRef Pubmed Google scholar
[24]
Ko S Y, Ko H J, Chang W S, Park S H, Kweon M N, Kang C Y (2005). alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol, 175(5): 3309–3317
Pubmed
[25]
Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995). KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res, 7(10–11): 529–534
Pubmed
[26]
Kopecky-Bromberg S A, Fraser K A, Pica N, Carnero E, Moran T M, Franck R W, Tsuji M, Palese P (2009). Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine, 27(28): 3766–3774
CrossRef Pubmed Google scholar
[27]
Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl K F, Mizutani Y, Imai K, Taniguchi M (1991). Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci USA, 88(17): 7518–7522
CrossRef Pubmed Google scholar
[28]
Lee P T, Benlagha K, Teyton L, Bendelac A (2002). Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med, 195(5): 637–641
CrossRef Pubmed Google scholar
[29]
Lee Y S, Lee K A, Lee J Y, Kang M H, Song Y C, Baek D J, Kim S, Kang C Y (2011). An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine, 29(3): 417–425
CrossRef Pubmed Google scholar
[30]
Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong C H, Ho D D, Tsuji M (2010a). Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA, 107(29): 13010–13015
CrossRef Pubmed Google scholar
[31]
Li Y, Girardi E, Wang J, Yu E D, Painter G F, Kronenberg M, Zajonc D M (2010b). The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med, 207(11): 2383–2393
CrossRef Pubmed Google scholar
[32]
Lu X, Song L, Metelitsa L S, Bittman R (2006). Synthesis and evaluation of an alpha-C-galactosylceramide analogue that induces Th1-biased responses in human natural killer T cells. ChemBioChem, 7(11): 1750–1756
CrossRef Pubmed Google scholar
[33]
Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995). Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol, 7(7): 1157–1161
CrossRef Pubmed Google scholar
[34]
Matangkasombut P, Pichavant M, Yasumi T, Hendricks C, Savage P B, Dekruyff R H, Umetsu D T (2008). Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol, 121(5): 1287–1289
CrossRef Pubmed Google scholar
[35]
Mattner J, Debord K L, Ismail N, Goff R D, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage P B, Bendelac A (2005). Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature, 434(7032): 525–529
CrossRef Pubmed Google scholar
[36]
Miyamoto K, Miyake S, Yamamura T (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature, 413(6855): 531–534
CrossRef Pubmed Google scholar
[37]
Molling J W, Kölgen W, van der Vliet H J, Boomsma M F, Kruizenga H, Smorenburg C H, Molenkamp B G, Langendijk J A, Leemans C R, von Blomberg B M, Scheper R J, van den Eertwegh A J (2005). Peripheral blood IFN-gamma-secreting Valpha24+ Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer, 116(1): 87–93
CrossRef Pubmed Google scholar
[38]
Motsinger A, Haas D W, Stanic A K, Van Kaer L, Joyce S, Unutmaz D (2002). CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med, 195(7): 869–879
CrossRef Pubmed Google scholar
[39]
Nakagawa R, Serizawa I, Motoki K, Sato M, Ueno H, Iijima R, Nakamura H, Shimosaka A, Koezuka Y (2000). Antitumor activity of alpha-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells. Oncol Res, 12(2): 51–58
Pubmed
[40]
Nam J H, Kim E H, Song D, Choi Y K, Kim J K, Poo H (2011). Emergence of mammalian species-infectious and-pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol, 7(23):3281–3286
[41]
Natori T, Akimoto K, Motoki K, Koezuka Y, Higa T (1997). Development of KRN7000, derived from agelasphin produced by okinawan sponge. Nihon Yakurigaku Zasshi, 110 Suppl 163P–68P
[42]
Niemeyer M, Darmoise A, Mollenkopf H J, Hahnke K, Hurwitz R, Besra G S, Schaible U E, Kaufmann S H (2008). Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology, 123(1): 45–56
CrossRef Pubmed Google scholar
[43]
Osada T, Morse M A, Lyerly H K, Clay T M (2005). Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol, 17(9): 1143–1155
CrossRef Pubmed Google scholar
[44]
Parekh V V, Wilson M T, Olivares-Villagómez D, Singh A K, Wu L, Wang C R, Joyce S, Van Kaer L (2005). Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest, 115(9): 2572–2583
CrossRef Pubmed Google scholar
[45]
Petersen T R, Sika-Paotonu D, Knight D A, Dickgreber N, Farrand K J, Ronchese F, Hermans I F (2010). Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol, 88(5): 596–604
CrossRef Pubmed Google scholar
[46]
Porcelli S, Gerdes D, Fertig A M, Balk S P (1996). Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4- and heterogeneous with respect to TCR beta expression. Hum Immunol, 48(1–2): 63–67
CrossRef Pubmed Google scholar
[47]
Roberts T J, Sriram V, Spence P M, Gui M, Hayakawa K, Bacik I, Bennink J R, Yewdell J W, Brutkiewicz R R (2002). Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J Immunol, 168(11): 5409–5414
Pubmed
[48]
Rui-Hua Z, Hong-Yu C, Ming-Ju X, Kai L, Hua-Lan C, Cun-Lian W, Dong W, Cun-Xin L, Tong X (2011). Molecular characterization and pathogenicity of swine influenza H9N2 subtype virus A/swine/HeBei/012/2008/(H9N2). Acta Virol, 55(3): 219–226
CrossRef Pubmed Google scholar
[49]
Sandberg J K, Fast N M, Palacios E H, Fennelly G, Dobroszycki J, Palumbo P, Wiznia A, Grant R M, Bhardwaj N, Rosenberg M G, Nixon D F (2002). Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol, 76(15): 7528–7534
CrossRef Pubmed Google scholar
[50]
Schmieg J, Yang G, Franck R W, Tsuji M (2003). Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med, 198(11): 1631–1641
CrossRef Pubmed Google scholar
[51]
Schmieg J, Yang G, Franck R W, Tsuji M (2010). A multifactorial mechanism in the superior antimalarial activity of alpha-C-GalCer. J Biomed Biotechnol, 2010: 283612
CrossRef Pubmed Google scholar
[52]
Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V (1987). Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, 330(6149): 664–666
CrossRef Pubmed Google scholar
[53]
Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y (2003). NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer, 106(2): 236–243
CrossRef Pubmed Google scholar
[54]
Silk J D, Hermans I F, Gileadi U, Chong T W, Shepherd D, Salio M, Mathew B, Schmidt R R, Lunt S J, Williams K J, Stratford I J, Harris A L, Cerundolo V (2004). Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest, 114(12): 1800–1811
Pubmed
[55]
Sriram V, Du W, Gervay-Hague J, Brutkiewicz R R (2005). Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol, 35(6): 1692–1701
CrossRef Pubmed Google scholar
[56]
Sullivan B A, Kronenberg M (2005). Activation or anergy: NKT cells are stunned by alpha-galactosylceramide. J Clin Invest, 115(9): 2328–2329
CrossRef Pubmed Google scholar
[57]
Teng M W, Westwood J A, Darcy P K, Sharkey J, Tsuji M, Franck R W, Porcelli S A, Besra G S, Takeda K, Yagita H, Kershaw M H, Smyth M J (2007). Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res, 67(15): 7495–7504
CrossRef Pubmed Google scholar
[58]
Thapa P, Zhang G, Xia C, Gelbard A, Overwijk W W, Liu C, Hwu P, Chang D Z, Courtney A, Sastry J K, Wang P G, Li C, Zhou D (2009). Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine, 27(25–26): 3484–3488
CrossRef Pubmed Google scholar
[59]
Uldrich A P, Crowe N Y, Kyparissoudis K, Pellicci D G, Zhan Y, Lew A M, Bouillet P, Strasser A, Smyth M J, Godfrey D I (2005). NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol, 175(5): 3092–3101
Pubmed
[60]
van der Vliet H J, von Blomberg B M, Hazenberg M D, Nishi N, Otto S A, van Benthem B H, Prins M, Claessen F A, van den Eertwegh A J, Giaccone G, Miedema F, Scheper R J, Pinedo H M (2002). Selective decrease in circulating V alpha 24+V beta 11+ NKT cells during HIV type 1 infection. J Immunol, 168(3): 1490–1495
Pubmed
[61]
Vanderberg J P, Nussenzweig R S, Most H, Orton C G (1968). Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol, 54(6): 1175–1180
CrossRef Pubmed Google scholar
[62]
Velmourougane G, Raju R, Bricard G, Im J S, Besra G S, Porcelli S A, Howell A R (2009). Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH. Bioorg Med Chem Lett, 19(13): 3386–3388
CrossRef Pubmed Google scholar
[63]
Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med, 152(4 Pt 2): S25– S30
Pubmed
[64]
Yamaguchi Y, Motoki K, Ueno H, Maeda K, Kobayashi E, Inoue H, Fukushima H, Koezuka Y (1996). Enhancing effects of (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-2-(N-hexacosanoylamino) -1,3,4-octadecanetriol (KRN7000) on antigen-presenting function of antigen-presenting cells and antimetastatic activity of KRN7000-pretreated antigen-presenting cells. Oncol Res, 8(10–11): 399– 407
Pubmed
[65]
Yang G, Schmieg J, Tsuji M, Franck R W (2004). The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed Engl, 43(29): 3818–3822
CrossRef Pubmed Google scholar
[66]
Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, Tsutsumi A, Taniguchi M, Sumida T (2008). Invariant NKT cells produce IL-17 through IL-23-dependent and-independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med, 22(3): 369–374
Pubmed
[67]
Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul W E (1995). Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science, 270(5243): 1845–1847
CrossRef Pubmed Google scholar
[68]
Youn H J, Ko S Y, Lee K A, Ko H J, Lee Y S, Fujihashi K, Boyaka P N, Kim S H, Horimoto T, Kweon M N, Kang C Y (2007). A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine, 25(28): 5189–5198
CrossRef Pubmed Google scholar
[69]
Yu E D, Girardi E, Wang J, Zajonc D M (2011). Cutting Edge: Structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J Immunol, 187(5): 2079–2083
CrossRef Pubmed Google scholar
[70]
Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y P, Yamashita T, Teneberg S, Wang D, Proia R L, Levery S B, Savage P B, Teyton L, Bendelac A (2004). Lysosomal glycosphingolipid recognition by NKT cells. Science, 306(5702): 1786–1789
CrossRef Pubmed Google scholar

Acknowledgments

The authors have no competing financial interest. This work was supported by grants from the American Cancer Society, NIH/NCI K01 CA131487, R21 CA162273, R21 CA162277, and P30 Tumor Immunology and Immunotherapy Program to T J Webb. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/