Received date: 05 Jul 2012
Accepted date: 04 Aug 2012
Published date: 01 Oct 2012
Copyright
Rett syndrome is an Autism Spectrum Disorder caused by mutations in the gene encoding methyl-CpG binding protein (MeCP2). Following a period of normal development, patients lose learned communication and motor skills, and develop a number of symptoms including motor disturbances, cognitive impairments and often seizures. In this review, we discuss the role of MeCP2 in regulating synaptic function and how synaptic dysfunctions lead to neuronal network impairments and alterations in sensory information processing. We propose that Rett syndrome is a disorder of neural circuits as a result of non-linear accumulated dysfunction of synapses at the level of individual cell populations across multiple neurotransmitter systems and brain regions.
Key words: Rett syndrome; MeCP2; neural circuit; ERP; synapse
Darren GOFFIN , Zhaolan (Joe) ZHOU . The neural circuit basis of Rett syndrome[J]. Frontiers in Biology, 2012 , 7(5) : 428 -435 . DOI: 10.1007/s11515-012-1248-5
1 |
Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185––188
|
2 |
Armstrong D D (2005). Neuropathology of Rett syndrome. J Child Neurol, 20(9): 747–753
|
3 |
Asaka Y, Jugloff D G M, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227
|
4 |
Bader G G, Witt-Engerström I, Hagberg B (1989). Neurophysiological findings in the Rett syndrome, II: Visual and auditory brainstem, middle and late evoked responses. Brain Dev, 11(2): 110–114
|
5 |
Belichenko N P, Belichenko P V, Mobley W C (2009a). Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation. Neurobiol Dis, 34(1): 71–77
|
6 |
Belichenko P V, Wright E E, Belichenko N P, Masliah E, Li H H, Mobley W C, Francke U (2009b). Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol, 514(3): 240–258
|
7 |
Calfa G, Hablitz J J, Pozzo-Miller L (2011). Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging. J Neurophysiol, 105(4): 1768–1784
|
8 |
Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T C, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229
|
9 |
Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437
|
10 |
Chao H T, Chen H, Samaco R C, Xue M, Chahrour M, Yoo J, Neul J L, Gong S, Lu H C, Heintz N, Ekker M, Rubenstein J L, Noebels J L, Rosenmund C, Zoghbi H Y (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321): 263–269
|
11 |
Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65
|
12 |
Chen R Z, Akbarian S, Tudor M, Jaenisch R (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 27(3): 327–331
|
13 |
Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889
|
14 |
Cheval H, Guy J, Merusi C, De Sousa D, Selfridge J, Bird A(2012). Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. Hum Mol Genet, 21(17): 3806–3814
|
15 |
Cohen S, Gabel H W, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85
|
16 |
Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689
|
17 |
Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3): 327–335
|
18 |
D’Cruz J A, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks J H (2010). Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol Dis, 38(1): 8–16
|
19 |
Dani V S, Chang Q, Maffei A, Turrigiano G G, Jaenisch R, Nelson S B (2005). Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA, 102(35): 12560–12565
|
20 |
Dani V S, Nelson S B (2009). Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome. J Neurosci, 29(36): 11263–11270
|
21 |
Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B G, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109
|
22 |
Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958
|
23 |
Gandal M J, Edgar J C, Klook K, Siegel S J (2011). Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology, 62(3): 1504–1518
|
24 |
Gantz S C, Ford C P, Neve K A, Williams J T (2011). Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. J Neurosci, 31(35): 12629–12637
|
25 |
Gemelli T, Berton O, Nelson E D, Perrotti L I, Jaenisch R, Monteggia L M (2006). Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry, 59(5): 468–476
|
26 |
Goffin D, Allen M, Zhang L, Amorim M, Wang I T J, Reyes A R S, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy J A, Carlson G C, Siegel S J, Greenberg M E, Zhou Z (2012). Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci, 15(2): 274–283
|
27 |
Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science, 315(5815): 1143–1147
|
28 |
Guy J, Hendrich B, Holmes M, Martin J E, Bird A (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 27(3): 322–326
|
29 |
Jian L, Nagarajan L, de Klerk N, Ravine D, Bower C, Anderson A, Williamson S, Christodoulou J, Leonard H (2006). Predictors of seizure onset in Rett syndrome. J Pediatr, 149(4): 542–547
|
30 |
Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191
|
31 |
Kishi N, Macklis J D (2004). MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci, 27(3): 306–321
|
32 |
Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914
|
33 |
Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500
|
34 |
Lonetti G, Angelucci A, Morando L, Boggio E M, Giustetto M, Pizzorusso T (2010). Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry, 67(7): 657–665
|
35 |
Marchetto M C N, Carromeu C, Acab A, Yu D, Yeo G W, Mu Y, Chen G, Gage F H, Muotri A R (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4): 527–539
|
36 |
McGraw C M, Samaco R C, Zoghbi H Y (2011). Adult neural function requires MeCP2. Science, 333(6039): 186
|
37 |
Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, Zhang W (2008). Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol, 99(1): 112–121
|
38 |
Moretti P, Levenson J M, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26(1): 319–327
|
39 |
Na E S, Nelson E D, Adachi M, Autry A E, Mahgoub M A, Kavalali E T, Monteggia L M (2012). A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci, 32(9): 3109–3117
|
40 |
Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481
|
41 |
Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389
|
42 |
Neul J L, Kaufmann W E, Glaze D G, Christodoulou J, Clarke A J, Bahi-Buisson N, Leonard H, Bailey M E S, Schanen N C, Zappella M, Renieri A, Huppke P, Percy A K, and the RettSearch Consortium (2010). Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol, 68(6): 944–950
|
43 |
Noutel J, Hong Y K, Leu B, Kang E, Chen C (2011). Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron, 70(1): 35–42
|
44 |
Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32(3): 989–994
|
45 |
Samaco R C, Mandel-Brehm C, Chao H T, Ward C S, Fyffe-Maricich S L, Ren J, Hyland K, Thaller C, Maricich S M, Humphreys P, Greer J J, Percy A, Glaze D G, Zoghbi H Y, Neul J L (2009). Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci USA, 106(51): 21966–21971
|
46 |
Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35(2): 243–254
|
47 |
Skene P J, Illingworth R S, Webb S, Kerr A R W, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468
|
48 |
Stauder J E A, Smeets E E J, van Mil S G M, Curfs L G M (2006). The development of visual- and auditory processing in Rett syndrome: an ERP study. Brain Dev, 28(8): 487–494
|
49 |
Szulwach K E, Li X, Smrt R D, Li Y, Luo Y, Lin L, Santistevan N J, Li W, Zhao X, Jin P (2010). Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol, 189(1): 127–141
|
50 |
Taneja P, Ogier M, Brooks-Harris G, Schmid D A, Katz D M, Nelson S B (2009). Pathophysiology of locus ceruleus neurons in a mouse model of Rett syndrome. J Neurosci, 29(39): 12187–12195
|
51 |
Tropea D, Giacometti E, Wilson N R, Beard C, McCurry C, Fu D D, Flannery R, Jaenisch R, Sur M (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA, 106(6): 2029–2034
|
52 |
Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100–113
|
53 |
van Zundert B, Yoshii A, Constantine-Paton M (2004). Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci, 27(7): 428–437
|
54 |
Ward C S, Arvide E M, Huang T W, Yoo J, Noebels J L, Neul J L (2011). MeCP2 is critical within HoxB1-derived tissues of mice for normal lifespan. J Neurosci, 31(28): 10359–10370
|
55 |
Weng S M, McLeod F, Bailey M E S, Cobb S R (2011). Synaptic plasticity deficits in an experimental model of Rett syndrome: long-term potentiation saturation and its pharmacological reversal. Neuroscience, 180: 314–321
|
56 |
Wood L, Gray N W, Zhou Z, Greenberg M E, Shepherd G M G (2009). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci, 29(40): 12440–12448
|
57 |
Wood L, Shepherd G M G (2010). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis, 38(2): 281–287
|
58 |
Wu H, Tao J, Chen P J, Shahab A, Ge W, Hart R P, Ruan X, Ruan Y, Sun Y E (2010). Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci USA, 107(42): 18161–18166
|
59 |
Young J I, Hong E P, Castle J C, Crespo-Barreto J, Bowman A B, Rose M F, Kang D, Richman R, Johnson J M, Berget S, Zoghbi H Y (2005). Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA, 102(49): 17551–17558
|
60 |
Zhang Z W, Zak J D, Liu H (2010). MeCP2 is required for normal development of GABAergic circuits in the thalamus. J Neurophysiol, 103(5): 2470–2481
|
61 |
Zhou Z, Hong E J, Cohen S, Zhao W N, Ho H Y H, Schmidt L, Chen W G, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269
|
62 |
Zoghbi H Y (2003). Postnatal neurodevelopmental disorders: meeting at the synapse?Science, 302(5646): 826–830
|
/
〈 | 〉 |