RESEARCH ARTICLE

Induction of metallothionein expression during monocyte to melanoma-associated macrophage differentiation

  • Yingbin GE 1,2 ,
  • Rikka AZUMA 3 ,
  • Bethsebah GEKONGE 4 ,
  • Alfonso LOPEZ-CORAL 5 ,
  • Min XIAO 1 ,
  • Gao ZHANG 1 ,
  • Xiaowei XU 6 ,
  • Luis J. MONTANER 4 ,
  • Zhi WEI 7 ,
  • Meenhard HERLYN 1 ,
  • Tao WANG , 1 ,
  • Russel E. KAUFMAN 1
Expand
  • 1. Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
  • 2. Department of Physiology, Nanjing Medical University, Nanjing 210029, China
  • 3. Undergraduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
  • 4. Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
  • 5. Graduate Program, The Catholic University of America, Washington DC 20064, USA
  • 6. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
  • 7. Department of Computer Science, New Jersey Institute of Technology, NJ 07102, USA

Received date: 10 May 2012

Accepted date: 03 Jun 2012

Published date: 01 Aug 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Tumor-associated macrophages (TAMs) play a critical role in melanoma growth and metastasis. Infiltration of TAMs correlates with the poor prognosis of melanoma. TAMs are differentiated from monocytes in response to the tumor microenvironment cue. However, the mechanism how TAMs adapt to the tumor microenvironment after differentiation from monocytes is not fully understood. In addition, specific identification of TAMs in melanoma is difficult because the expression of the most commonly used macrophage marker, CD68, is also expressed in melanoma cells. In an earlier study, we found by gene microarray analysis that seven members of the metallothionein (MTs) family were upregulated in melanoma-conditioned medium induced macrophages (MCIM-Mф). MTs have been implicated in zinc metabolism and inflammation. In the present study, we confirmed that expression of metallothionein is induced in M-CSF differentiated macrophages (M-CSF/Mф) and MCIM-Mф at both the mRNA and protein levels using real-time PCR, immunofluorescence, and western blot analysis. Furthermore, we demonstrated the presence of metallothionein in melanoma tissues in vivo and that metallothionein was co-localized with TAMs markers, CD68 and CD163. Finally, we demonstrated the induction of the zinc importer gene Zip8 both in M-CSF/Mф and MCIM-Mф. Our study identifies metallothionein as a novel marker for TAMs and suggests that metallothionein might play important roles in macrophage adaptation and function in the tumor microenvironment.

Cite this article

Yingbin GE , Rikka AZUMA , Bethsebah GEKONGE , Alfonso LOPEZ-CORAL , Min XIAO , Gao ZHANG , Xiaowei XU , Luis J. MONTANER , Zhi WEI , Meenhard HERLYN , Tao WANG , Russel E. KAUFMAN . Induction of metallothionein expression during monocyte to melanoma-associated macrophage differentiation[J]. Frontiers in Biology, 2012 , 7(4) : 359 -367 . DOI: 10.1007/s11515-012-1237-8

Acknowledgments

We thank the Wistar Institute Cancer Center Flow Cytometry Core Facility for helping with instrument setup and data analysis, the Microscopy Core Facility for imaging, and the Research Supply Center for cell culture supplies and reagents.
This work was supported by grants from the National Institutes of Health (5P30CA 010815-42) and the Commonwealth Universal Research Enhancement Program of the Pennsylvania Department of Health (R.E.K, L.J.M, M.H.), The Wistar Institute Intramural grants and the W.W. Smith Foundation for R.E.K and T.W., the National Institutes of Health grants for M.H. (CA047159, CA025874, CA114046), and the Philadelphia Foundation and Miller family grant for L.J.M.
1
Bernengo M G, Quaglino P, Cappello N, Lisa F, Osella-Abate S, Fierro M T (2000). Macrophage-mediated immunostimulation modulates therapeutic efficacy of interleukin-2 based chemoimmunotherapy in advanced metastatic melanoma patients. Melanoma Res, 10(1): 55-65

PMID

2
Bröcker E B, Zwadlo G, Holzmann B, Macher E, Sorg C (1988). Inflammatory cell infiltrates in human melanoma at different stages of tumor progression. Int J Cancer, 41(4): 562-567

DOI PMID

3
Cassidy M, Loftus B, Whelan A, Sabt B, Hickey D, Henry K, Leader M (1994). KP-1: not a specific marker. Staining of 137 sarcomas, 48 lymphomas, 28 carcinomas, 7 malignant melanomas and 8 cystosarcoma phyllodes. Virchows Arch, 424(6): 635-640

DOI PMID

4
Colvin R A, Holmes W R, Fontaine C P, Maret W (2010). Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics, 2(5): 306-317

DOI PMID

5
De S K, McMaster M T, Andrews G K (1990). Endotoxin induction of murine metallothionein gene expression. J Biol Chem, 265(25): 15267-15274

PMID

6
Deng D, El-Rifai W, Ji J, Zhu B, Trampont P, Li J, Smith M F, Powel S M (2003). Hypermethylation of metallothionein-3 CpG island in gastric carcinoma. Carcinogenesis, 24(1): 25-29

DOI PMID

7
Duluc D, Delneste Y, Tan F, Moles M P, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N, Descamps P, Gamelin E, Gascan H, Hebbar M, Jeannin P (2007). Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood, 110(13): 4319-4330

DOI PMID

8
Gazzaniga S, Bravo A I, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007). Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol, 127(8): 2031-2041

DOI PMID

9
Ghoshal K, Majumder S, Jacob S T (2002). Analysis of promoter methylation and its role in silencing metallothionein I gene expression in tumor cells. Methods Enzymol, 353: 476-486

DOI PMID

10
Glesne D, Vogt S, Maser J, Legnini D, Huberman E (2006). Regulatory properties and cellular redistribution of zinc during macrophage differentiation of human leukemia cells. J Struct Biol, 155(1): 2-11

DOI PMID

11
Henrique R, Jerónimo C, Hoque M O, Nomoto S, Carvalho A L, Costa V L, Oliveira J, Teixeira M R, Lopes C, Sidransky D (2005). MT1G hypermethylation is associated with higher tumor stage in prostate cancer. Cancer Epidemiol Biomarkers Prev, 14(5): 1274-1278

DOI PMID

12
Huang Y, de la Chapelle A, Pellegata N S (2003). Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma. Int J Cancer, 104(6): 735-744

DOI PMID

13
Jensen T O, Schmidt H, Møller H J, Høyer M, Maniecki M B, Sjoegren P, Christensen I J, Steiniche T (2009). Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J Clin Oncol, 27(20): 3330-3337

DOI PMID

14
Joshi B, Ordonez-Ercan D, Dasgupta P, Chellappan S (2005). Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene, 24(13): 2204-2217

DOI PMID

15
Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S, Narayan D, Molinaro A M, Halaban R, Weissman S M (2009). Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res, 19(8): 1462-1470

DOI PMID

16
Levadoux-Martin M, Hesketh J E, Beattie J H, Wallace H M (2001). Influence of metallothionein-1 localization on its function. Biochem J, 355(Pt 2): 473-479

DOI PMID

17
Lewis C E, Pollard J W (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res, 66(2): 605-612

DOI PMID

18
Mäkitie T, Summanen P, Tarkkanen A, Kivelä T (2001). Tumor-infiltrating macrophages (CD68+ cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci, 42(7): 1414-1421

PMID

19
Mantovani A, Sica A (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22(2): 231-237

DOI PMID

20
Murphy B J, Andrews G K, Bittel D, Discher D J, McCue J, Green C J, Yanovsky M, Giaccia A, Sutherland R M, Laderoute K R, Webster K A (1999). Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res, 59(6): 1315-1322

PMID

21
Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H (1999). Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med, 190(2): 293-298

DOI PMID

22
Pernick N L, DaSilva M, Gangi M D, Crissman J, Adsay V (1999). “Histiocytic markers” in melanoma. Mod Pathol, 12(11): 1072-1077

PMID

23
Pollard J W (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 4(1): 71-78

DOI PMID

24
Qian B Z, Pollard J W (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1): 39-51

DOI PMID

25
Raleigh J A, Chou S C, Calkins-Adams D P, Ballenger C A, Novotny D B, Varia M A (2000). A clinical study of hypoxia and metallothionein protein expression in squamous cell carcinomas. Clin Cancer Res, 6(3): 855-862

PMID

26
Raleigh J A, Chou S C, Tables L, Suchindran S, Varia M A, Horsman M R (1998). Relationship of hypoxia to metallothionein expression in murine tumors. Int J Radiat Oncol Biol Phys, 42(4): 727-730

DOI PMID

27
Raymond A D, Gekonge B, Giri M S, Hancock A, Papasavvas E, Chehimi J, Kossenkov A V, Nicols C, Yousef M, Mounzer K, Shull J, Kostman J, Showe L, Montaner L J (2010). Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia. J Leukoc Biol, 88(3): 589-596

DOI PMID

28
Roca H, Varsos Z S, Sud S, Craig M J, Ying C, Pienta K J (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem, 284(49): 34342-34354

DOI PMID

29
Shah I A, Gani O S, Wheler L (1997). Comparative immunoreactivity of CD-68 and HMB-45 in malignant melanoma, neural tumors and nevi. Pathol Res Pract, 193(7): 497-502

DOI PMID

30
Shankar A H, Prasad A S (1998). Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr, 68(2 Suppl): 447S-463S

PMID

31
Sica A, Rubino L, Mancino A, Larghi P, Porta C, Rimoldi M, Solinas G, Locati M, Allavena P, Mantovani A (2007). Targeting tumour-associated macrophages. Expert Opin Ther Targets, 11(9): 1219-1229

DOI PMID

32
Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P (2010). Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol, 185(1): 642-652

DOI PMID

33
Sugiura T, Kuroda E, Yamashita U (2004). Dysfunction of macrophages in metallothionein-knock out mice. J UOEH, 26(2): 193-205

PMID

34
Tse K Y, Liu V W, Chan D W, Chiu P M, Tam K F, Chan K K, Liao X Y, Cheung A N, Ngan H Y (2009). Epigenetic alteration of the metallothionein 1E gene in human endometrial carcinomas. Tumour Biol, 30(2): 93-99

DOI PMID

35
Varney M L, Johansson S L, Singh R K (2005). Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A. Melanoma Res, 15(5): 417-425

DOI PMID

36
Wang T, Ge Y, Xiao M, Lopez-Coral A, Azuma R, Somasundaram R, Zhang G, Wei Z, Xu X, Rauscher Iii F J (2012). Melanoma-Derived Conditioned Media Efficiently Induce the Differentiation of Monocytes to Macrophages that Display a Highly Invasive Gene Signature. Pigment Cell Melanoma Res, Online Available <month>April</month><day>12</day>, 2012

37
Weinlich G (2009). Metallothionein-overexpression as a prognostic marker in melanoma. G Ital Dermatol Venereol, 144(1): 27-38

PMID

38
Weinlich G, Bitterlich W, Mayr V, Fritsch P O, Zelger B (2003). Metallothionein-overexpression as a prognostic factor for progression and survival in melanoma. A prospective study on 520 patients. Br J Dermatol, 149(3): 535-541

DOI PMID

39
Weinlich G, Eisendle K, Hassler E, Baltaci M, Fritsch P O, Zelger B (2006). Metallothionein- overexpression as a highly significant prognostic factor in melanoma: a prospective study on 1270 patients. Br J Cancer, 94(6): 835-841

DOI PMID

40
Weinlich G, Topar G, Eisendle K, Fritsch P O, Zelger B (2007). Comparison of metallothionein-overexpression with sentinel lymph node biopsy as prognostic factors in melanoma. J Eur Acad Dermatol Venereol, 21(5): 669-677

PMID

41
Weinlich G, Zelger B (2007). Metallothionein overexpression, a highly significant prognostic factor in thin melanoma. Histopathology, 51(2): 280-283

DOI PMID

42
Yamasaki M, Nomura T, Sato F, Mimata H (2007a). Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells. Oncol Rep, 18(5): 1145-1153

PMID

43
Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T (2007b). Zinc is a novel intracellular second messenger. J Cell Biol, 177(4): 637-645

DOI PMID

44
Zaidi M R, Davis S, Noonan F P, Graff-Cherry C, Hawley T S, Walker R L, Feigenbaum L, Fuchs E, Lyakh L, Young H A, Hornyak T J, Arnheiter H, Trinchieri G, Meltzer P S, De Fabo E C, Merlino G (2011). Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature, 469(7331): 548-553

DOI PMID

Outlines

/